Abstract

A proper k-coloring of a graph is a labeling of the vertices with $1, \ldots, k$ where no two adjacent vertices have the same label. We define a periodic action on the set of all proper k-colorings of a graph. The action is a product of whirls at each vertex, (which can also be thought as a generalization of the action of toggling independent sets,) defined by cyclically incrementing a vertex label until the result is again a proper k-coloring. Here we show results on the periodicity and general homomesies of the action on proper 3-colorings of both path graphs and cycle graphs.

The action ω on $K_k(G)$

• Let G = (V, E) be a graph with $K_k(G)$ being the set of proper k-colorings $\kappa : V \to [k]$.

			All Pro	oper 3 -(Coloring	gs of ⊶	O	O		
1)	-2-	-1	1	-2-	-3	1		-1	(1)	
2—	-1-	-2	2	-1)	-3	2	-3-	-1	2	
3—	-(1)	-2	3—	-(1)	-3	3—	-2)-	-(1)	3—	

Definition 1 (JPR18, Def 2.1). Define $w_v : K(G) \to K(G)$ (which at v) by incrementing the color of vertex v by 1 modulo k repeatedly until arriving at a proper k-coloring.

$$w_b \begin{pmatrix} 3 & 2 & 3 \\ a & b & c \end{pmatrix} = \begin{matrix} 3 & 1 & 3 \\ a & b & c \end{pmatrix}$$

• Let \mathcal{P}_n be the path graph with *n* vertices, and let \mathcal{C}_n be the cycle graph with *n* vertices.

• We set V = [n] labeled from left to right and consider the action $\omega = w_n \dots w_1$. Thus the proper k-colorings of \mathcal{P}_n are maps $\kappa : [n] \to [k]$ such that $\kappa(i-1) \neq \kappa(i) \neq \kappa(i+1)$ (modulo n if we are on a cyclic graph.) We also represent colorings with [k]-words of length n.

$$2 - (1 - (2) \rightarrow 212)$$

$$\omega(212) = w_3 w_2 w_1(212) = w_3 w_2(312) = w_3(312) = 313$$

Homomesy for ω acting on $K_3(\mathcal{P}_n)$ and $K_3(\mathcal{C}_n)$

Definition 2 (PR15, Def. 1.1). Let S be a set and τ an invertible action on S. We say a statistic $f: S \to K$ is homomesic if there exists $c \in K$ such that $\frac{\sum_{s \in O} f(s)}{\# O} = c$ for all orbits O of τ . When this holds, we also say f is c-mesic.

Theorem 1. Fix any color $j \in [3]$. Set $\chi_i := \chi_{i,j}$ ($\chi_i(\kappa)$ is 1 if $\kappa(i) = j$ and 0 otherwise). Under the action of ω on $K_3(\mathcal{P}_n)$,

- 1. $\chi_i \chi_{n+1-i}$ is 0-mesic, and
- 2. $2\chi_1 + \chi_2$ is 1-mesic and $\chi_{n-1} + 2\chi_n$ is 1-mesic.

Theorem 2. Fix any color $j \in [3]$. Set $\chi_i := \chi_{i,j}$. Under the action of ω on $K_3(\mathcal{C}_n)$,

- 1. If 3 $\not| n$, then χ_i is 1/3-mesic, and
- 2. If 3|n, then $\chi_{3a+i} \chi_{3b+i}$ is 0-mesic for $i \in [3]$ and $0 \le a, b \le \frac{n}{3} 1$.

PERIODICITY AND HOMOMESY FOR WHIRLING PROPER 3-COLORINGS OF A GRAPH

Matthew Plante

Department of Mathematics, University of Connecticut

Difference Vector

Definition 3. The difference vector, d of a proper 3-coloring of \mathcal{P}_n is the string of n-1 + s and -s depending on whether the coloring increases by 1 or decreases by 1 respectively from left to right.

+ + -	$1 \ 2 \ 3 \ 2$
+ - +	3131
-++	$2\ 1\ 2\ 3$
+ + -	3 1 2 1
+ - +	2323
-++	$1 \ 3 \ 1 \ 2$
+ + -	$2 \ 3 \ 1 \ 3$
+ - +	$1 \ 2 \ 1 \ 2$
-++	3231

Similarly the difference vector, d, of a proper 3-coloring of \mathcal{C}_n is the same as the difference vector of \mathcal{P}_n but with an extra + or - for the difference between the last color and the first color

> $3\ 2\ 1\ 2\ 1$ - - + - -

We set $s_i(d)$ to be # + - # - modulo k up to the *i*th entry in d, and call $s_n(d)$ the 'sum of d'. In the last example, the sum of - - + - - is 0.

The affect of ω on difference vectors

Lemma 1. If $\kappa \in K_3(\mathcal{P}_n)$ or $\kappa \in K_3(\mathcal{C}_n)$ with difference vector d,

- 1. If i is an interior vertex (degree two), then the difference vector of $w_i(\kappa)$ is d but with d_{i-1} and d_i swapped.
- 2. If i is an exterior vertex (degree one) and i = 1 (resp. i = n), then the difference vector of $w_i(\kappa)$ is d but with d_1 (resp. d_{n-1}) changed from + to – or vise versa.

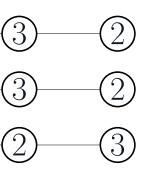
Here is an example where ω acts on κ one whirl at a time with the difference vector updated at each step.

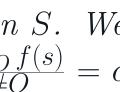
	$1\ 2\ 1\ 2\ 3\ 1$	+ - + + +
w_1	3 2 1 2 3 1	+++
w_2	321231	+++
W3	3 2 <mark>3</mark> 2 3 1	-+-++
w_4	323131	-+ + -+
w_5	323121	- + + <mark>+ -</mark>
w_6	32312 <mark>3</mark>	-+++

References

[PR15] James Propp and Tom Roby, Homomesy in products of two chains, Electronic J. Combin. 22(3) (2015), #P3.4, http://www.combinatorics. org/ojs/index.php/eljc/article/view/v22i3p4.

[JPR18] Michael Joseph and James Propp and Tom Roby, Whirling injections, surjections, and other functions between finite sets, 2018. https://arxiv. org/abs/1711.02411





Periodicity of ω on proper colorings

Proposition 1. If $\kappa \in K_3(\mathcal{P}_n)$, d is the difference vector of κ , and τ is leftward cyclic-shift on strings of +'s and -'s, then the difference vector $\omega(\kappa)$ is $\tau(d)$.

> $1\ 2\ 1\ 3\ 1\ 2 \qquad \xrightarrow{\omega} \qquad 3\ 2\ 1\ 2\ 3\ 1$ $+ - - + + \xrightarrow{\tau} - - + + +$

Proposition 2. If $\kappa \in K_3(\mathcal{C}_n)$, d is the difference vector of κ , and τ' is leftward cyclic-shift on the first n-1 elements of strings of +'s and -'s, then the difference vector $\omega(\kappa)$ is $\tau'(d)$.

> $1 \ 2 \ 1 \ 2 \qquad \xrightarrow{\omega} \qquad 3 \ 2 \ 3 \ 1$ $+ - + - \xrightarrow{\tau'} - + + -$

Theorem 3. Let $\kappa \in K_3(\mathcal{P}_n)$ have difference vector d. Let ℓ be the smallest natural number such that $\omega^{\ell}(\kappa) = \kappa$, t be the smallest natural number such that $\tau^t(d) = d$.

1. If the sum of d is 0, then $\ell = t$.

2. Otherwise $\ell = 3t$.

completing the proof.

Sketch of Proof of Homomesy

Let ℓ be the smallest natural number such that $\omega^{\ell}(\kappa) = \kappa$, and let t be the smallest natural number such that $\tau^t(d) = d$.

If $\ell = 3t$, then the orbit contains the other two proper 3-colorings with difference vector d, therefore every color appears in the each spot exactly 1/3 of the time. So we will focus on the case where $\ell = t$. To be precise, we will show

$$\kappa(i) = \omega^{i-1} \kappa(n+1-i)$$

1 3 2 3 1 2 1 3 1 2 3 2 1 3 1 2 1 3 2 3 1 $3 \ 2 \ 1 \ 3 \ 1 \ 2 \ 3$

If the first entry in the difference vector is +, then we subtract one from the first color in κ . Recall $s_i(d)$ is the partial sum of the first *i* entries in *d*, that is, # - # -modulo 3 up to the *i*th entry in *d*. Since the sum of *d* is 0, we know $s_n(d) \equiv 0$ modulo 3. It follows that $\kappa(i) = \kappa(1) + s_{i-1}(d)$ and $\omega^{i-1}\kappa(1) = 0$ $\kappa(1) - s_i(d)$. Therefore

$$\omega^{i-1}\kappa(n-i+1) = \kappa(1) - s_i(d) + s_{n-i}(\tau^{i-1}d)$$

But $s_n(d) \equiv 0 \mod 3$ so

$$s_{n-i}(\tau^{i-1}d) - s_i(d) \equiv s_{n-i}(\tau^{i-1}d) + s_i(d) - s_i(d) - s_i(d) \equiv -2s_i(d)$$

So $\kappa(i) = \omega^{i-1}\kappa(n+1-i)$. The argument is similar for $\kappa \in K_3(\mathcal{C}_n)$.

Poster PDF at https://matthewplante.com

 $(d) \equiv s_i(d).$