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Abstract

A proper k-coloring of a graph is a labeling of the vertices with 1, . . . , k where no two
adjacent vertices have the same label. We define a periodic action on the set of all proper
k-colorings of a graph. The action is a product of whirls at each vertex, (which can also be
thought as a generalization of the action of toggling independent sets,) defined by cyclically
incrementing a vertex label until the result is again a proper k-coloring. Here we show
results on the periodicity and general homomesies of the action on proper 3-colorings of
both path graphs and cycle graphs.

The action ω on Kk(G)

• LetG = (V,E) be a graph withKk(G) being the set of proper k-colorings κ : V → [k].

All Proper 3-Colorings of
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Definition 1 (JPR18, Def 2.1).Define wv : K(G)→ K(G) (whirl at v) by incre-
menting the color of vertex v by 1 modulo k repeatedly until arriving at a proper
k-coloring.
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• Let Pn be the path graph with n vertices, and let Cn be the cycle graph with n vertices.

P4 = C4 =

• We set V = [n] labeled from left to right and consider the action ω = wn . . . w1. Thus
the proper k-colorings of Pn are maps κ : [n]→ [k] such that κ(i−1) 6= κ(i) 6= κ(i+1)
(modulo n if we are on a cyclic graph.) We also represent colorings with [k]-words of
length n.

2 1 2 → 212
ω(212) = w3w2w1(212) = w3w2(312) = w3(312) = 313

Homomesy for ω acting on K3(Pn) and K3(Cn)

Definition 2 (PR15, Def. 1.1). Let S be a set and τ an invertible action on S. We
say a statistic f : S → K is homomesic if there exists c ∈ K such that

∑
s∈O f (s)

#O = c
for all orbits O of τ . When this holds, we also say f is c-mesic.

Theorem 1. Fix any color j ∈ [3]. Set χi := χi,j (χi(κ) is 1 if κ(i) = j and 0
otherwise). Under the action of ω on K3(Pn),

1. χi − χn+1−i is 0-mesic, and

2. 2χ1 + χ2 is 1-mesic and χn−1 + 2χn is 1-mesic.

Theorem 2. Fix any color j ∈ [3]. Set χi := χi,j. Under the action of ω on K3(Cn),

1. If 3 6 |n, then χi is 1/3-mesic, and

2. If 3|n, then χ3a+i − χ3b+i is 0-mesic for i ∈ [3] and 0 ≤ a, b ≤ n
3 − 1.

Difference Vector

Definition 3. The difference vector, d of a proper 3-coloring of Pn is the
string of n− 1 ’s and ’s depending on whether the coloring increases by
1 or decreases by 1 respectively from left to right.

1 2 3 2
3 1 3 1
2 1 2 3
3 1 2 1
2 3 2 3
1 3 1 2
2 3 1 3
1 2 1 2
3 2 3 1

Similarly the difference vector, d, of a proper 3-coloring of Cn is the same
as the difference vector of Pn but with an extra or for the difference
between the last color and the first color

3 2 1 2 1

We set si(d) to be # − # modulo k up to the ith entry in d, and call
sn(d) the ‘sum of d’. In the last example, the sum of is 0.

The affect of ω on difference vectors

Lemma 1. If κ ∈ K3(Pn) or κ ∈ K3(Cn) with difference vector d,

1. If i is an interior vertex (degree two), then the difference vector of wi(κ)
is d but with di−1 and di swapped.

2. If i is an exterior vertex (degree one) and i = 1 (resp. i = n), then the
difference vector of wi(κ) is d but with d1 (resp. dn−1) changed from
to or vise versa.

Here is an example where ω acts on κ one whirl at a time with the difference
vector updated at each step.

1 2 1 2 3 1
w1 3 2 1 2 3 1
w2 3 2 1 2 3 1
w3 3 2 3 2 3 1
w4 3 2 3 1 3 1
w5 3 2 3 1 2 1
w6 3 2 3 1 2 3
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Periodicity of ω on proper colorings

Proposition 1. If κ ∈ K3(Pn), d is the difference vector of κ, and τ is
leftward cyclic-shift on strings of ’s and ’s, then the difference vector
ω(κ) is τ (d).

1 2 1 3 1 2 ω−→ 3 2 1 2 3 1
τ−→

Proposition 2. If κ ∈ K3(Cn), d is the difference vector of κ, and τ ′ is
leftward cyclic-shift on the first n − 1 elements of strings of ’s and ’s,
then the difference vector ω(κ) is τ ′(d).

1 2 1 2 ω−→ 3 2 3 1
τ ′−→

Theorem 3. Let κ ∈ K3(Pn) have difference vector d. Let ` be the smallest
natural number such that ω`(κ) = κ, t be the smallest natural number such
that τ t(d) = d.

1. If the sum of d is 0, then ` = t.

2. Otherwise ` = 3t.

Sketch of Proof of Homomesy

Let ` be the smallest natural number such that ω`(κ) = κ, and let t be the
smallest natural number such that τ t(d) = d.

If ` = 3t, then the orbit contains the other two proper 3-colorings with difference
vector d, therefore every color appears in the each spot exactly 1/3 of the time.
So we will focus on the case where ` = t. To be precise, we will show

κ(i) = ωi−1κ(n + 1− i)

completing the proof.
1 3 2 3 1 2 1
2 1 2 3 1 3 2
3 1 2 3 2 1 3
2 3 1 3 2 1 2
1 2 1 3 2 3 1
3 2 1 3 1 2 3

If the first entry in the difference vector is , then we subtract one from the
first color in κ. Recall si(d) is the partial sum of the first i entries in d, that
is, # − # modulo 3 up to the ith entry in d. Since the sum of d is 0, we
know sn(d) ≡ 0 modulo 3. It follows that κ(i) = κ(1) + si−1(d) and ωi−1κ(1) =
κ(1)− si(d). Therefore

ωi−1κ(n− i + 1) = κ(1)− si(d) + sn−i(τ i−1d)

But sn(d) ≡ 0 mod 3 so

sn−i(τ i−1d)− si(d) ≡ sn−i(τ i−1d) + si(d)− si(d)− si(d) ≡ −2si(d) ≡ si(d).

So κ(i) = ωi−1κ(n + 1− i). The argument is similar for κ ∈ K3(Cn).
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