
Whirling P -partitions and rowmotion on
chain-factor posets

Matthew Plante, Ph.D.

University of Connecticut, 2022

ABSTRACT

We investigate the dynamics of certain natural actions on labelings of partially

ordered sets (posets) and related objections. Rowmotion (Definition 2.1.5) is an

invertible map on order ideals of a poset which has received much attention recently

from researchers in dynamical algebraic combinatorics. Of particular interest are the

order of the rowmotion map and the homomesy phenomenon (Definition 1.1.2). In

this dissertation we look at rowmotion on order ideals of posets of families not yet

thoroughly investigated, including fence posets, obtained by arbitrarily ordering each

edge in a path graph up or down. These posets are important in the theory of cluster

algebras and q-analogues. The rowmotion orbits of antichains of fence posets can be

succinctly visualized using certain tilings of a cylinder.

Another family is the ∨ × [k] posets, where ∨ is the ∨-shaped three element

poset with two relations and one minimal element, and [k] is a k-element chain.

Here we make an equivariant bijection between rowmotion on order ideals and the

whirling action, introduced by Joseph, Propp, and Roby, on P-partitions of ∨. Finally

we investigate whirling proper colorings of path graphs and cycle graphs. This is

motivated as a generalization of toggling independent sets of a path graph, which
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itself has an equivariant bijection to rowmotion on order ideals of a special type of

fence poset.
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Chapter 1

Introduction

In most settings of dynamical algebraic combinatorics a map τ acts on a set of com-

binatorial objects. When τ is invertible, the set is partitioned into orbits. Questions

concerning periodicity and orbit structure arise and are resolved with a combination

of algebraic and bijective methods. The homomesy phenomenon (Definition 1.1.2) is

of particular interest in the field [8, 1, 12] and has become a focus of the author in

several projects. this thesis will explore these themes of dynamical algebraic combi-

natorics for previously unstudied sets of combinatorial objects and invertible maps τ ,

as well as briefly expositing earlier related work.

After giving a formal definition of homomesy with examples, we will move on

to the main combinatorial setting: antichains and order ideals of partially ordered

sets. In Section 2 we define the action of rowmotion, stating old and new results on

periodicity and homomesy on a poset. One useful strategy in proving results in this

thesis is to find equivariant bijections, which carry an action on one set to a different

action on another set. In Section 3 we define whirling on P -partitions of a partially

1
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ordered set. In this section we will also establish an equivariant bijection between

order-reversing labelings of a poset P and rowmotion on P× [k]. In Section 4 we show

a new result on periodicity and some homomesies regarding rowmotion on V × [k],

using the equivariant bijection from Section 3. Finally, in Section 5 we will give a

generalization of independent sets on a graph, namely partial proper colorings, and

prove a result for graphs of the form Kn × [n].

1.1 Homomesy

To motivate homomesy we start with an example where the combinatorial setting is

binary strings and the action is leftward cyclic shift. We define [n] = {1, 2, . . . , n −

1, n} and [m,n] = {m,m + 1, . . . , n − 1, n}. In particular we will use [0, n] =

{0, 1, 2, . . . , n}.

Example 1.1.1. Let S ⊂ {0, 1}4 be the set of binary strings of length 4 with exactly

2 zeros, and let τ be the action of leftward cyclic shift on binary strings. The group

action ⟨τ⟩ partitions S into one orbit of length 4 and one of length 2.

1001
τ−→ 0011

τ−→ 0110
τ−→ 1100

τ

0101
τ−→ 1010

τ

We borrow from the symmetric group the inversions statistic inv which returns

the number of times a 0 comes after a 1 in the binary string. This statistic is 2-mesic.

inv(1001) + inv(0011) + inv(0110) + inv(1100) = 2 + 0 + 2 + 4 = 8.
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inv(0101) + inv(1010) = 1 + 3 = 4.

So in either case we get that the sum of the inversion statistic over an orbit is twice

the orbit size. This phenomenon of a statistic having the same average over all orbits

is known as homomesy.

Definition 1.1.2 ([27]). Given a set S, an invertible map τ : S → S such that each

τ -orbit is finite, and a statistic f : S → K (for some field K of characteristic zero), we

say the triple (S, τ, f) exhibits homomesy if there exists a constant c ∈ K such that

for every τ -orbit O ⊂ S ∑
x∈O f(x)

#O
= c.

In this situation we say that the function f is homomesic under the action of the

cyclic group ⟨τ⟩ on S, or more specifically c-mesic.

Proposition 1.1.3 ([27]). Let τ be leftward cyclic shift on binary strings of length

a+ b with exactly a 1’s. Then inv(s) is ab/2-mesic.

This is a formalization of what we witnessed in Example 1.1.1. Apart from rotation

of binary strings, homomesy arises in many other settings. One setting rife with

homomesy is that of order ideals of a posets under the action of rowmotion (see

definitions in Section 2). Here are the two orbits of rowmotion on order ideals of a

certain fence poset, one of length 11 and one of length 5.

Orbit of length 11:

→ → →
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→ → → →

→ → →

Orbit of length 5:

→ → → →

Label the elements of the fence poset x1, . . . , x6 from left to right. We define the

characteristic function χi to be 1 whenever an order ideal contains xi and 0 otherwise.

The statistics χ1 + χ6, χ2 + χ5, and χ3 + χ4 are each 1-mesic.

χ1 + χ6 χ2 + χ5 χ3 + χ4

For example, the total of number of times x2 is filed in plus the number of times

x5 is filled in across an orbit is counted by χ2 + χ5. The total of this is the same

as the length of the orbit. Homomesies are not always straightforward to prove and

one useful technique is a bijection between the two sets that also sends one action

to another. Such a bijection is called an equivariant bijection. Section 2 and Section

4 contain examples demonstrating the importance of finding the right equivariant

bijection.
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1.2 Independent sets of a path graph

Let Pn be the path graph on n vertices. That is P is the graph with vertices {1, . . . , n}

and edges {i, i+ 1} for all 1 ≤ i < n.

Definition 1.2.1. An independent set of a graph G = (V,E) is a set of vertices

S ⊆ V such that if x ∈ S and y ∈ S, then {x, y} ̸∈ E.

Let I(G) be the set of all independent sets of G, and for this section we set In to

be the set of independent sets of Pn.

Example 1.2.2. For n = 7, ∈ I(P7).

We can represent an independent set S ∈ In of a path graph by a binary string

of length n where the ith position is 1 if and only if i ∈ S. For Example 1.2.2 the

bitstring would be 1010010. The independence condition means that we get exactly

the set of length n binary strings without adjacent substring 11. Next, we introduce

an action on independent sets.

Definition 1.2.3 ([19]). Define the toggle at vertex i, τi : In → In, for 1 ≤ i ≤ n as

follows:

τi(S) =


S ∪ {i} if i ̸∈ S and S ∪ {i} ∈ In

S if i ̸∈ S and S ∪ {i} ̸∈ In

S ∖ {i} if i ∈ S.

It is not hard to see that τi is an involution. (If τi has no effect, or if an element

can be taken out, then it can be put back in and vise versa, hence an involution.)

Let 01000 be the binary string representation of an independent set in I5. If we act

on the independent set with τ4, then we would add 4, since neither 3 or 5 are in the
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independent set, resulting in 01010. Instead if we act with τ2, then we will remove 2

from the independent set, resulting in 00000. Finally, if instead we act with τ3, then

nothing will happen because adding 3 would not be an independent set, so the result

is the unchanged bitstring 01000.

An important feature of the toggle in this setting is that two toggles commute

whenever the nodes they toggle are nonadjacent.

Proposition 1.2.4. If G = (V,E), S ∈ I(G), and uv ̸∈ E, then the toggles τv and

τu commute, that is τvτu(S) = τuτv(S).

Proof. Since u and v are not adjacent, whether u is in an independent set S has no

effect on whether v is in S and vice-versa. Hence applying τu and τv to S in either

order gives the same result.

This is a generalization of [19, Prop 2.2]. We will define φ = τnτn−1 . . . τ1 to be

the action that toggles the vertices of an independent set of a path graph from left

to right.

Definition 1.2.5. Let S be a set of strings, words, or vectors, of length n and

τ : S → S an invertible map. Let O be a finite orbit of τ , and let s = (s1, . . . , sn) ∈ O.

An orbit board B is a table of width n and infinite length such that B(i, j) = (τ is)j.

The rows of the table are the elements of O with the element τs being directly

underneath s. Even though the boards are infinite in length, usually just one orbit

(each row written once) is written out and is referred to as the orbit board. A super

orbit board is an orbit board with more than one orbit written out.

Example 1.2.6. Here is the orbit board of φ generated by 01000101. Underneath is
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the sum of each column.
0 1 0 0 0 1 0 1
0 0 1 0 0 0 0 0
1 0 0 1 0 1 0 1
0 1 0 0 0 0 0 0
0 0 1 0 1 0 1 0
1 0 0 0 0 0 0 1
0 1 0 1 0 1 0 0
0 0 0 0 0 0 1 0
1 0 1 0 1 0 0 1
0 0 0 0 0 1 0 0
1 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0
5 3 4 3 3 4 3 5

We define the statistics χi : S → Q to be 1 if i ∈ S and 0 otherwise. With the

action φ and statistic χ we get the following homomesy.

Theorem 1.2.7 ([19]). For n ≥ 2, under the action of φ on the independent sets of

Pn, both the statistics 2χ1 + χ2 and χn−1 + 2χn is 1-mesic.

The proof for Theorem 1.2.7 is short enough to state here. Suppose you have an

independent set that starts with 00 . . . . After one iteration of ϕ the result will always

be 10 . . . . After the next iteration of ϕ there are two cases, either the string is 101 . . .

and the next step is 000 . . . or the string is 100 . . . and the next step is 010 . . . . In

the first case we are already back in case 00 . . . . The length of this case is 2, explicitly

00 · · · → 10 · · · → 00 . . . and 2χ1 + χ2 will have average 1 over this case. Similarly,

the second case’s next iteration of ϕ will result in 00 . . . . So the second case will have

length 3, explicitly 00 · · · → 10 · · · → 01 · · · → 00 . . . , and 2χ1 + χ2 with an average

of 1 for this case as well. Since every board can be partitioned into these cases and

the statistic 2χ1 +χ2 has an average of 1 for both types of cases the theorem follows.

A similar argument is used for the second homomesy.
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A more impressive homomesy can be also be found with an equivariant bijection.

Theorem 1.2.8 ([19]). Under the action of φ on the independent sets of Pn, the

statistic χi − χn−i+1 is 0-mesic.

Example 1.2.9. Here is an example of this homomesy in the case where n = 5.

Notice that the column sums form a palindrome.

0 0 0 0 0
1 0 1 0 1
1 0 1 0 1

1 0 0 0 0
0 1 0 1 0
0 0 0 0 1
1 0 1 0 0
0 0 0 1 0
1 0 0 0 1
0 1 0 0 0
0 0 1 0 1
3 2 2 2 3

1 0 0 1 0
0 1 0 0 1
0 0 1 0 0
1 1 1 1 1

In Example 1.2.6 we get (χi) = (5, 3, 4, 3, 3, 4, 3, 5) which is another example.

Theorem 1.2.8 is proven by establishing an equivariant bijection between the binary

strings of τ and cyclic shift on compositions of n with each component being 1 or 2.

This bijection requires the following lemma.

Lemma 1.2.10 ([19]). Given an orbit, O, of τ on Pn fix an independent set S ∈ O.

Let χ(i, j) = χj(τ
iS). Suppose χ(i, j) = 1 for j < n− 1. The following holds:

• If χ(i+ 2, j) = 1, then χ(i+ 1, j + 1) = 0,

• otherwise χ(i+ 1, j + 1) = 1.

Similarly if j = n− 1, then χ(i+ 1, n) = 1.

Example 1.2.11. Here is an independent set S written above φ(S). In red, we can

see that since there is no 1 in the fourth position of S, we add a 1 in the third position
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when applying φ. On the other hand, in blue, we can see that since there is a 1 in

the eighth position of S, a 1 will not be placed in the seventh position in φ(S).

S = 0 1 0 0 0 1 0 1
φ(S) = 0 0 1 0 0 0 0 0

This is a lemma best proven by inspection. View an orbit board as a matrix of

bits where each row is an independent set. When applying τ to an independent set,

if the jth entry is 1 for j < n− 1, then the jth bit is changed to a 1 and the (j+1)st

bit will be changed to a 1 if and only if the (j+2)nd is 0. Using this lemma, the 1’s of

an orbit board can now be partitioned into jump snakes. We can write a jump snake

as a composition of n − 1 with 1’s and 2’s, where diagonal moves are marked with

1 and horizontal moves are marked with 2 so the sum of the composition is always

n− 1.

Example 1.2.12. The jump snake partition for Example 1.2.6.

0 1 0 0 0 1 0 1
0 0 1 0 0 0 0 0
1 0 0 1 0 1 0 1
0 1 0 0 0 0 0 0
0 0 1 0 1 0 1 0
1 0 0 0 0 0 0 1
0 1 0 1 0 1 0 0
0 0 0 0 0 0 1 0
1 0 1 0 1 0 0 1
0 0 0 0 0 1 0 0
1 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0

Here are the compositions of 7 corresponding to the corresponding jump snakes: 11122

(for the snake starting the in the bottom left corner), 11221, 12211, 22111, and 21112.
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Theorem 1.2.13 ([19]). In an orbit board B, consider a snake starting on the ith

line. Let c be the snake’s composition. Consider the least i′, i′ > i, for which the first

entry of the i′th line is 1. (This is where the “next” snake begins.)

1. If c starts with 1, then i′ = i+ 3.

2. If c starts with 2, then i′ = i+ 2.

3. The composition for the snake starting on the Si′ line is the left cyclic rotation

of c.

Using Theorem 1.2.13(3), we can prove the palindromic homomesy (Theorem

1.2.8) using the following bijection between the 1’s in the orbit board. A partial

sum of i − 1 in the composition means there is a 1 is the ith position in some orbit

element S. Suppose this partial sum is of length k, then after k iterations of leftward

cyclic shift the partial sum will have moved to the right side of the composition. This

indicates a 1 in the n− i+1st position of some other element in the orbit board. Full

details are available in [19, Thm 2.25].

Using this setting as a launching point, there are a few different directions in which

one can generalize these results. There is an equivariant bijection from this toggle

product τ on independent sets to rowmotion on order ideals of a certain zigzag poset.

We will see this later with recent results in rowmotion on fence posets in Section 2.

The notion of independent set can be generalized to m-independent set where each

pair of 1’s is separated by at least m 0’s. These m-independent sets come with a

generalization of the rotation action which we will see in Section 3.3.1. Finally we

will see in Section 5 another generalization to colored independent sets which we call

partial proper colorings.



Chapter 2

Rowmotion

2.1 Definitions

Rowmotion (Definition 2.1.5) is an invertible action on order ideals (or analogously

antichains) of a partially ordered set (poset) (Definition 2.1.1) which has received

much interest within dynamical algebraic combinatorics. Rowmotion was introduced

by Duchet in [9] and first studied for the Boolean lattice and the product of two

chains by Brouwer and Schrijver [5, 4]. Rowmotion and its generalizations have been

investigated by many authors, for example [6, 27, 33, 34]. See, in particular, the

survey articles of Roby [28] and Striker [32] and the references therein. We begin

this section with a brisk overview of Posets with notation mostly borrowed from

Enumerative Combinatorics, Vol. 1 [31].

Definition 2.1.1 ([31]). A partially ordered set P (or poset) is a set with a binary

relation ≤P (or just ≤ when unambiguous) which is reflexive, antisymetric, and tran-

11
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sitive.

We will often write our poset P with relation ≤P as the pair (P,≤P ). We will

also abuse notation and drop the P to write x < y when x, y ∈ P are distinct and

there is no ambiguity. Within a poset one element covers a smaller element if there

is no element that sits in-between, that is, y covers x if there does not exist z ∈ P

such that x < z < y. When y covers x we may write x ⋖ y or y ⋗ x. When there is

no relation between x and y we say x and y are incomparable,

There are many common examples of posets of infinite size such as N with its

natural ordering but we will focus on finite posets. It is often useful to represent a

poset by its Hasse Diagram, a graph whose vertices are the elements of P and whose

edges represent cover relations.

Example 2.1.2. The divisors of 72 form a poset with relation x ≤ y if and only if x

divides y.

1

2

4 6

12

36

3

9

188

24

72

Definition 2.1.3 ([31]). Let (P,≤) be a poset.

1. An order ideal of P is a subset I of P such that if y ∈ I and x ≤ y, then x ∈ I.

Similarly, an order filter of P is a subset F of P such that if y ∈ F and y ≤ x,

then x ∈ F .
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2. A chain is a subset C of P such that if x, y ∈ C, then either x ≤ y or y ≤ x.

An antichain of P is a subset A of P such that if x, y ∈ A, then x and y are

incomparable.

Let J(P ) and A(P ) denote the set of all order ideals and antichains of a poset P

respectively.

Example 2.1.4. Using the poset in Example 2.1.2, we see {1, 2, 3} is an order ideal,

{9, 12, 18, 24, 36, 72} is an order filter, {2, 18, 36, 72} is a chain, and {6, 8, 9} is an

antichain.

Another useful poset construction is the Cartesian product of posets. For posets

P and Q we define the poset (P × Q,≤P×Q) (usually just written P × Q) where

(p, q) ≤P×Q (p′, q′) if and only if p ≤P p′ and q ≤Q q′.

Let L(P ) be the set of injective function f : P → [n] such that f(x) < f(y) if and

only if x <P y. The set L(P ) is called the set of linear extensions or total orderings

of P .

Definition 2.1.5 ([20]). Let P be a generic poset. We define natural bijections

between the sets J (P ) of all order ideals of P , F(P ) of all order filters of P , and

A(P ) of all antichains of P .

• The map Θ : 2P → 2P where Θ(S) = P \S is the complement of S (sending

order ideals to filters and vice versa).

• The up-transfer ∇ : J (P )→ A(P ), where ∇(I) is the set of maximal elements

of I. For an antichain A ∈ A(P ), ∇−1(A) = {x ∈ P : x ≤ y for some y ∈ A}.
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• The down-transfer ∆ : F(P ) → A(P ), where ∆(F ) is the set of minimal ele-

ments of F . For an antichain A ∈ A(P ), ∆−1(A) = {x ∈ P : x ≥ y for some y ∈

A}.

Order ideal rowmotion is the map ρJ : J (P ) → J (P ) given by ρJ = ∇−1 ◦ ∆ ◦ Θ.

Antichain rowmotion is the map ρA : A(P )→ A(P ) given by ρA = ∆ ◦Θ ◦ ∇−1.

Example 2.1.6. Here is an example of one iteration of ρJ on an order ideal with the

action broken down into its three steps.

Θ−→ ∆−→ ∇−1

−−→

Example 2.1.7. Here is an example of one iteration of ρA on an antichain with the

action broken down into its three steps.

∇−1

−−→ Θ−→ ∆−→

One could also define rowmotion on order filters, which gives the most natural

lifting to PL-rowmotion on chain polytopes [11].

2.2 Rowmotion as a product of toggles

Rowmotion has an alternate definition as a composition of toggling involutions, which

has proven useful for understanding and generalizing many of its properties. Cameron

and Fon-der-Flaass [6] showed that for any finite poset P , rowmotion can be realized
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as “toggling once at each element of P along any linear extension (from top to bot-

tom)”. Other toggling orders also lead to interesting maps, such as Striker–Williams

“promotion” (of order ideals) of a poset, which is toggling from left-to-right along

“files” of a poset [33].

Definition 2.2.1. For each fixed i ∈ P define the antichain toggle τi : A(P )→ A(P )

by

τi(A) =


A∖ {i} if i ∈ A

A ∪ {i} if i ̸∈ A and A ∪ {i} ∈ A(P )

A if i ̸∈ A and A ∪ {i} ̸∈ A(P )

Similarly, we defined the order-ideal toggle τ̂i : J (P )→ J (P ) by

τ̂i(I) =


I ∖ {i} if i ∈ I and I ∖ {i} ∈ J (P )

I ∪ {i} if i ̸∈ I and I ∪ {i} ∈ J (P )

I otherwise.

It is an easy exercise to show that both antichain toggles [6, §2] and order ideal

toggles [19, §5] are involutions. Note that one can always toggle an element out of

an antichain to get a different antichain, which explains a small asymmetry in the

definitions as stated.

Example 2.2.2. We will toggle each node down a linear extension, at each step we

consider whether or not to toggle the red node in or out. Fix the following linear
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extension

2

5 4

7

1

3

6

For the following linear extension we toggle the elements of this poset from left-to-

right and top-to-bottom.

τ̂7−→ τ̂6−→ τ̂5−→

τ̂4−→ τ̂3−→ τ̂2−→ τ̂1−→

Proposition 2.2.3 ([6]). Let x1, x2, . . . , xn be any linear extension (i.e., any order-

preserving listing of the elements) of a finite poset P with n elements. Then the

composite map τ̂x1 τ̂x2 · · · τ̂xn coincides with the rowmotion operation ρ̂J .

Rowmotion on order ideals or antichains of a poset has been one focus of research

in dynamical algebraic combinatorics with the goal of finding homomesies. One area

of recent development was on the family of posets known as fence posets.

2.3 Rowmotion on fence posets

A fence poset, F = {x1, . . . , xn}, is a poset with elements

x1 ⋖ x2 ⋖ · · ·⋖ xj ⋗ xj+1 ⋗ · · ·⋗ xk ⋖ . . .
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The maximal chains of F are called segments. Elements that are in more than one

segment are called shared elements, and all other elements are unshared elements.

Example 2.3.1. Here is a fence with 9 elements.

x1

x2

x3

x4

x5

x6

x7

x8

x9

This fence poset has three segments, and the elements x3 and x6 are shared.

We will denote each F by the number of unshared elements in each segment.

That is, we will write F (α) where α = (α1, . . . , αm) to mean the fence poset with

m segments and αj unshared elements in the jth segment. So the example above is

F (2, 2, 3). Fences have important connections with cluster algebras [7, 24, 26, 29, 30,

35], q-analogues [22], unimodality [7, 14, 16, 21, 23], and Young diagrams [25]. The

study of rowmotion on fence posets was initiated in [13].

Example 2.3.2. Here is an example of order-ideal rowmotion on a small poset.

ρJ−→
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Here is another example but with antichain rowmotion.

ρA−→

In this section we will investigate both order-ideal rowmotion and antichain row-

motion. To help distinguish between the two settings, we will denote order-ideal

rowmotion with ρJ and similarly the cardinality statistic on an order ideal will be

denoted by χ̂.

2.3.1 Dual posets

For any poset P we can define the dual of P , denoted P ∗, to be the poset which

reverses the ordering on P (on the same set of elements).

Example 2.3.3. Here we have P = F (4, 2, 3) and P ∗ = F (3, 2, 4).

P = P ∗ =

Call P self-dual if P ∼= P ∗. When P is self-dual we can say something about

homomesies for the cardinality statistic with order-ideal rowmotion. We’ll take a

brief aside into dual posets to state this proposition formally.

Definition 2.3.4. Let P be self-dual and define κ : P → P ∗ to be the map that sends

x ∈ P to y ∈ P ∗ found by flipping the Hasse diagram upside-down. In particular

κ(I) ∈ F(P ) for all I ∈ J (P ).
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Example 2.3.5. The poset P = F (4, 3, 4) has an order ideal I on the left and the

order filter κ(I) on the right.

κ(I)−−→

Definition 2.3.6. Let P be self-dual. Define the complement I of I to be the order

ideal obtained by flipping P\I upside down. That is, I = κ(P\I) as an order ideal

in P .

Example 2.3.7. Let F = F (4, 3, 4).

κ(F\I) in F−−−−−−−→

Lemma 2.3.8. Let P be a self-dual poset, P = P ∗. Then

ρ−1
J (I) = ρJ(I)

for all I ∈ J (P ).

Proof. We can write rowmotion as the composition of three maps, ρJ = ∇−1 ◦∆ ◦Θ,

and the complement map as the composition Θ ◦ κ, or identically as κ ◦Θ. It suffices
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to see that the following diagram commutes for any I1 ∈ J (P ).

I1 F1 A1 I2

I1 A F I

Θ ∆

κ

∇−1

κ κ

∇ ∆−1 Θ

The first square commutes because taking the minimal elements of an order filter

when flipped upside-down will be the maximal elements of F flipped upside-down.

The second square commutes because the downward saturation of an antichain

corresponds to the upwards saturation of κ(A) in P ∗.

With this we get the following from the diagram. Taking the higher path we

obtain,

I = Θ ◦ κ ◦ (∇−1 ◦∆ ◦Θ(I1)) = ρJ(I1),

and taking the lower path we obtain,

I = Θ ◦∆−1 ◦ ∇ ◦ (κ ◦Θ(I1)) = ρ−1
J (I1).

The following proposition gives us a result for homomesies whenever P is self-dual

and every order-ideal rowmotion orbit of P is self-dual, in the sense that, if I ∈ J (P )

generates an orbit O and I generates an orbit O, then O = O.

Proposition 2.3.9. Let P be self-dual with n = #P , and fix an order-reversing

bijection κ : P → P . Let I ∈ J (P ). If I ∈ O and O is the orbit generated by I, then

#O = #O and

χ̂(O) + χ̂(O)
#O +#O

=
n

2
.
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Furthermore, if O = O for all I ∈ I(P ), then χ̂ is n/2-mesic.

Proof. Fix I ∈ O. From Lemma 2.3.8 we know ρkJ(I) = ρ−k
J (I). If #O = m, then

ρmJ (I) = I and it follows ρmJ (I) = ρmJ (I) = I, so #O = m. Now the sum O ⊕ O

can be partitioned into pairs {I, I} and singleton {I} with I = I. In each pair and

singleton, the average of χ̂ is n/2, so the same is true when considered over the whole

orbit. When O = O, the result reduces to the homomesy.

A fence poset F (α) is self dual whenever α is a palindrome of odd length. It turns

out that the study of independent sets of a path graph (Subsection 1.2) is subsumed by

the study of fence posets, because there is an equivariant bijection from independent

sets of a path graph to order ideals of the fence poset F = F (1, 0, 0, . . . , 0, 1) called a

zigzag poset. The equivariant bijection takes the toggling from left-to-right map, φ,

to rowmotion on order ideals, ρJ . [19].

2.4 Toggling rowmotion on fence posests

In this section we prove that the order in which the vertices of a fence poset are order-

ideal toggled does not change the set of homomesies (Theorem 2.4.5). To accomplish

this we define the toggle groups for antichains and order ideals, then utilize a strategy

similar to one Joseph and Roby used in a related context [19, §2.3], which in turn

uses ideas from Einstein, et al. [10, §2–3]. We state an analogous result for antichain

toggles (Conjecture 2.4.10), which has thus far evaded our current proof techniques.

Proposition 2.4.1 ([6]). Let P be a finite poset.

1. For every x ∈ P , τ̂x is an involution, i.e., τ̂ 2x = 1.
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1
4

3
2

5

Figure 2.1: F (1, 1, 1)

2. For every x, y ∈ P where neither x covers y nor y covers x, the toggles commute,

i.e., τ̂xτ̂y = τ̂y τ̂x.

Let TP be the antichain toggle group ofA(P ), that is, TP is the subgroup generated

by the antichain toggles within SA(P ). Similarly, we define T̂P to be the order-ideal

toggle group of J (P ), that is, TP is the subgroup generated by the antichain toggles

within SJ(P ). For a finite poset whose nodes are labeled by [n], we call an element w

in TP (resp. T̂P ) a Coxeter element if it is a product (in some order) of τ1, τ2, . . . , τn

(resp. τ̂1, τ̂2, . . . , τ̂n), each used exactly once.

Example 2.4.2. Consider the fence poset F = F (1, 2, 1) with vertices labeled 1, 2,

3, 4, and 5 from left to right, as in Figure 2.1. Two particular elements of TF would

be Pro := τ5τ4τ3τ2τ1 and ρJ = τ2τ5τ3τ1τ4, promotion and rowmotion respectively.

Proposition 2.4.3 ([19]). Within the antichain toggle group TF of any fence F , the

order of the map τi ◦ τj is


1 if i = j,

2 if i and j are incomparable,

2, 3, or 6 if i < j or j < i.

Proof. The first two cases are straightforward. Assume i < j. To show the order of
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τjτi is 6 we will show there is an orbit of size 2, an orbit of size 3, and none larger.

Notice that any orbit of τjτi contains at most A,A∪ {i}, A∪ {j}, for any A ∈ A(P ).

Particularly, {∅, i, j} is an orbit of order 3. However, it could be that j is a maximal

element and there is k ∈ A such that k and i are incomparable but j > k. In this

case the order of τjτi is 2, generating the orbit (A,A ∪ {i}).

An analogous statement holds for order-ideal toggles.

Proposition 2.4.4. Within the order-ideal toggle group T̂F of any fence F , the order

of the map τ̂i ◦ τ̂j is 
1 if i = j,

2 if |i− j| ≥ 2

2, 3, or 6 if |i− j| = 1.

So TP and T̂P are each quotients of Coxeter groups. (The Coxeter groups given

by just the relations in Prop. 2.4.3 or in Prop. 2.4.4 are infinite, while TP ⊂ SA(P )

and T̂P ⊂ SJ(P ) are finite.) Within each group, a given product of toggles may give

the same result when the toggles are rearranged in certain ways (but not in others),

since some toggles commute with each other. The next proposition shows that even if

rearranging the order of factors of a Coxeter element results in a different map, then

the two maps will give the same homomesies, at least for those writable as linear

combinations of poset-element characteristic functions.

Theorem 2.4.5. Let F be a fence poset, and let w and w′ be two Coxeter elements

in the order-ideal toggle group T̂F . Then any statistic which is a linear combination

of indicator functions χ̂j is c-mesic under the action of w if and only if it is c-mesic

under the action of w′.



24

Definition 2.4.6. For any toggle group T we define the base graph ΓT whose vertex

set is the generators with an edge connecting two vertices if and only if the associated

elements do not commute.

Example 2.4.7. Let F = F (1, 2, 1) as in Figure 2.1. Following Proposition 2.4.4,

the base graph of T̂F is the path graph of length 5.

τ̂1 τ̂4τ̂3τ̂2 τ̂5

Similarly, following Proposition 2.4.3 the base graph of TF is

τ1 τ4τ3τ2 τ5

An old result of Bourbaki [3, 2, V, §6, ndeg, Lemma 1] states that if the base

graph has no cycles, then τ̂ν(1) · · · τ̂ν(n) is conjugate to τ̂1 · · · τ̂n for any permutation

ν ∈ Sn. (See also Lemma 5.1 of [33].) This is the situation within the order-ideal

toggle group T̂F (since the edges are the covering relations), but not the antichain

toggle group TF (in which any two comparable elements are connected). In order to

prove the homomesies, we need a more explicit construction that shows we can get

from a Coxeter element to any other via a sequence of admissible conjugations, which

we now describe.

We associate with each Coxeter word an acyclic orientation of the base graph,

defined as follows: We direct the edge connecting i and i + 1 in the direction of i

(resp. i + 1) if τ̂i appears to the right (resp. left) of τ̂i+1 in the word. For example,

the Coxeter element τ̂1τ̂5τ̂2τ̂4τ̂3 is associated with the following orientation of the base
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graph of F (1, 2, 1).

τ̂1 τ̂4τ̂3τ̂2 τ̂5

Notice that in any Coxeter element each toggle at a source vertex appears to the left

of any other toggle with which it does not commute. We call such toggles initial in

the Coxeter word. Similarly any toggle whose noncommuting toggles are all to the

right in the Coxeter are called final and are associated with sinks in the base graph

orientation. Since toggles are involutions, conjugating by an initial or final toggles

gives another Coxeter element. For example, conjugating w = τ̂2τ̂5τ̂4τ̂3τ̂1 by τ̂3 gives

τ̂3(τ̂2τ̂5τ̂4τ̂3τ̂1)τ̂3 = τ̂3(τ̂2τ̂5τ̂4τ̂1τ̂3)τ̂3 = τ̂3τ̂2τ̂5τ̂4τ̂1

Notice that this conjugated τ̂3 from the right to the left, thus changing the vertex

from a sink to a source. These conjugations by initial or final toggles are called admis-

sible. Conjugations of Coxeter elements which are not admissible do not necessarily

result in Coxeter elements. Eriksson and Eriksson [15, Theorem 1.1] show that any

two Coxeter elements are conjugate if and only if there is a sequence of admissible

conjugations. (In their language changing sources to sinks and vice-versa in the base

graph is called “chip-firing”, which results in a “rotation”, which we would call an

admissible conjugation.)

Example 2.4.8. Here is an example of conjugating w = τ̂1τ̂5τ̂2τ̂4τ̂3 by a sequence of

admissible conjugations to arrive at w′ = τ̂1τ̂2τ̂3τ̂4τ̂5. Note that the arrows of the base
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graph do not change when moving commuting elements past one another.

τ̂1τ̂5τ̂2τ̂4τ̂3 τ̂1 τ̂4τ̂3τ̂2 τ̂5

conjugate by τ̂3

τ̂3τ̂1τ̂5τ̂2τ̂4 τ̂1 τ̂4τ̂3τ̂2 τ̂5

move τ̂2 to the right

τ̂3τ̂1τ̂5τ̂4τ̂2 τ̂1 τ̂4τ̂3τ̂2 τ̂5

conjugate by τ̂2

τ̂2τ̂3τ̂1τ̂5τ̂4 τ̂1 τ̂4τ̂3τ̂2 τ̂5

move τ̂5 to the left

τ̂5τ̂2τ̂3τ̂1τ̂4 τ̂1 τ̂4τ̂3τ̂2 τ̂5

conjugate by τ̂5

τ̂2τ̂3τ̂1τ̂4τ̂5 τ̂1 τ̂4τ̂3τ̂2 τ̂5

move τ̂1 to the right

τ̂2τ̂3τ̂4τ̂5τ̂1 τ̂1 τ̂4τ̂3τ̂2 τ̂5

conjugate by τ̂1

τ̂1τ̂2τ̂3τ̂4τ̂5 τ̂1 τ̂4τ̂3τ̂2 τ̂5

This leads to the following lemma, from which Theorem 2.4.5 follows immediately.

Lemma 2.4.9. Fix a fence poset F. Let w and w′ be Coxeter elements of T̂F which

differ by a single admissible conjugation. Any statistic which is a linear combination

of indicator functions χ̂j is c-mesic under the action of w if and only if it is c-mesic

under the action of w′.

Proof. Suppose w′ = τ̂kwτ̂k where τ̂k is initial or final. It follows that w
′τ̂k(I) = τ̂kw(I)
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for any I ∈ J (F ). Let O be an orbit of w generated by I, that is,

O = (I0, I1, . . . , Im−1)

where I i = wi(I) for any i ∈ Z and Im = I0 = I. Let I ′ = τ̂kI, then w′I ′ =

τ̂kwτ̂kτ̂kI = τ̂kwI = τ̂kI
1. This gives us a w′ orbit O′ = (τ̂kI

0, τ̂kI
1, . . . , τ̂kI

m−1).

Furthermore, this induces a bijection between the orbits of w and orbits of w′. Our aim

is now to show that homomesies are preserved through this bijection. To accomplish

this, it suffices to show that the indicator functions are preserved. If j ̸= k, then

∑
I∈O

χ̂jI =
∑
I∈O′

χ̂jI

since toggling by τ̂k does not change whether or not j is in I. On the other hand,

assume τk is final, that is we can move the toggle to the right, so applying τk to I i

changes k ∈ I just as w does and χ̂k(τk(I
i)) = χ̂k(I

i+1). Otherwise, τk is initial, that

is, we can move the toggle to the left, so applying τk to I i cancels with the τk in

w and χ̂k(τk(I
i)) = χ̂k(I

i−1). Since the orbit is length m, we have I−1 = Im−1 and

Im = I0 = I. Regardless of whether τk is initial or final we obtain,

∑
I∈O

χ̂kI = χ̂k(I
0) + χ̂k(I

1) + · · ·+ χ̂k(I
m−1) =

∑
I∈O′

χ̂kI

Since the indicator functions are preserved through admissible conjugation, so are the

homomesies.

Theorem 2.4.5 follows since any two Coxeter elements are connected by a sequence

of admissible conjugations. The analogous results for antichain toggles appears to be
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true as well experimentally.

Conjecture 2.4.10. Let F be a fence poset, and let w and w′ be two Coxeter elements

in the antichain toggle group TF . Then any statistic which is a linear combination

of indicator functions χj is c-mesic under the action of w if and only if it is c-mesic

under the action of w′.

The base graph of the antichain toggle group on the fence poset is not a path

in general. Any segment with interior elements will form cycles in the base graph.

Eriksson and Eriksson [15, Proposition 4.1] show that admissible conjugations induce

an equivalence relation on the set of Coxeter elements. There is only one conjugacy

class for the path graph, so admissible conjugations suffice to prove our result for

order-ideal toggles. However, there are multiple equivalence classes when the base

graph has cycles, so following a similar strategy to that of Proposition 2.4.5 breaks

down.

2.5 Rowmotion on a product of two chains

An early example of rowmotion exhibiting homomesy was for order ideals of a poset

which is a product of two chains. Let a and b be positive integers and [a] × [b] the

poset obtained by taking the Cartesian product of [a] and [b].
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Example 2.5.1. Here is the poset [4]× [6].

Theorem 2.5.2 ([27], Section 3.3, Theorem 23). The cardinality statistic is c-mesic

under the action of rowmotion ρJ on J ([a]× [b]), with c = ab/2.

Example 2.5.3. The two orbits of order-ideal rowmotion on J ([2]× [3]).

→ → → →

→ → → →

Adding up the number of filled-in nodes in each orbit we get 15; thus, each orbit

has average cardinality of 3.

Here is a similar result for antichain rowmotion on antichains of A([a]× [b]) from
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the same paper.

Theorem 2.5.4 ([27], Section 3.3, Theorem 27). The cardinality statistic is c-mesic

under the action of rowmotion ρA on A([a]× [b]), with c = ab/(a+ b).

Example 2.5.5. Here are the two orbits of antichain rowmotion on A([2]× [3]).

→ → → →

→ → → →

Adding up the number of filled-in nodes in each orbit we get 6; thus, each orbit has

average cardinality of 6/5.

We will revisit this combinatorial setting later with a new equivariant bijection

that reproves Theorem 2.5.2.



Chapter 3

Whirling

3.1 Whirling function between finite sets

In this section we will let F ⊆ [k][n] be a family of functions f : [n]→ [k]. For the rest

of this paper, we use {1, . . . , k} = [k] to represent the congruence classes of Z/kZ as

opposed to the usual {0, 1, . . . , k − 1}. For fixed values of k and n, we can represent

such functions either in two-line notation or one-line notation, e.g., f = (2 1 3 4 4)

or f = 21344 each represent the function f ∈ [4][5] with f(1) = 2, etc.

Definition 3.1.1 ([18]). For f ∈ F we define the whirl wi : F → F at index i as

follows: repeatedly add 1 (modulo k) to the value of f(i) until we get a function in

F .

Example 3.1.2. Let F = {f ∈ [4][5] : f(1) ̸= 2}. f we apply w2 to f = 21344, adding

1 in the second position gives 22344, but this is not in F . Adding 1 again in this

position gives the result: w2(f) = 23344.

31
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We will now highlight some specific results from the paper where whirling was

first introduced. Let Injm(n, k) be the set of m-injective functions, that is, functions

f : [n] → [k] such that #f−1(t) ≤ m for all t ∈ [k]. Similarly, let Surm(n, k) be

the set of m-surjective functions, that is, f : [n] → [k] such that #f−1(t) ≥ m for

all t ∈ [k]. Note that injective functions are 1-injections and surjective functions are

1-surjectives. We also define the statistic ηj = #f−1({j}).

Theorem 3.1.3 ([18]). Fix F to be either Injm(n, k) or Sur1(n, k) for a given n, k,m ∈

P. Then under the action of w = wn ◦ wn−1 ◦ · · · ◦ w1 on F , ηj is n
k
-mesic for any

j ∈ [k]

The same result is conjectured to hold for Surm(n, k), but is still open. The key

idea of the proof is to partition any orbit board into chunks, each of which contains

each element of [k] exactly once. Each chunk is constructed inductively starting from

some 1 in the orbit board. If the element directly below is not a 2, then there must

have been (and still be) a 2 elsewhere in the row or the row below. Add that 2 to

the chunk. Continue this process starting at 2 then 3 and so on. Once every 1 is in

a chunk, every other number is also in a chunk. Details on the proof can be found in

Sections 2.2-2.4 of [18].

Example 3.1.4. Here is an orbit of w on Inj1(3, 6) containing f = 415.

415
w−→ 621

w−→ 342
w−→ 563

w−→ 124
w−→ 356

w−→ 412
w−→ 534

w−→ 651
w−→ 263

w
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And here is the orbit board partitioned into chunks:

4 1 5
6 2 1
3 4 2
5 6 3
1 2 4
3 5 6
4 1 2
5 3 4
6 5 1
2 6 3

Notice that each value 1, 2, . . . , 6 appear exactly 5 times in this orbit of size 10, in

accordance with the 1/2-mesy of Theorem 3.1.3.

3.2 Order-reversing maps on posets

Let P be a poset with n = #P , and let L be a bijection from P to [n], called a labeling

of P . A P -partition is a map σ from P to N such that if x <P y, then σ(x) ≥ σ(y) [31,

Definition 3.15.1].

Definition 3.2.1. An order-reversing map with maximum part k is a function f :

P → [0, k] such that if x ≤P y, then f(x) ≥ f(y). Let Fk(P ) be the set of all such

functions.

Recall that L(P ) denotes the set of order-preserving maps from P to [n].

Definition 3.2.2. Let P be a poset. For f ∈ Fk(P ) and x ∈ P , define wx : Fk(P )→

Fk(P ), called the whirl at x, as follows: repeatedly add 1 (mod k + 1) to the value

of f(x) until we get a function in Fk(P ). This new function is wx(f).
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Proposition 3.2.3. If x, y ∈ P are incomparable, then wxwy(f) = wywx(f).

Proof. Since x and y are incomparable, there are no inequalities constraining the

relationship between f(x) and f(y). So wxwy = wywx.

Definition 3.2.4. For any linear extension ℓ of P , the elements of P are labeled

x1, . . . , xn. We define the whirl w : Fk(P ) → Fk(P ) to be the product w =

wnwn−1 · · ·w1. We say w(f) or just wf is the whirl of f .

Example 3.2.5. Let P be the three-element poset with nodes {a, b, c} and the two

relations b ≤ a and b ≤ c.
a

b

c

Start with the labeling f ∈ F2(P ) such that f(a) = 0, f(b) = 2 and f(c) = 2. We use

the linear extension (b, c, a) of P to compute wf = wbwcwaf . First, add 1 to f(a) = 0

to get 1 at a, since b ≤P a and f(a) ≤ f(b) we stop with waf(a) = 1. Similarly, add 1

to waf(c) = 2 to get 0 so wcwaf(c) = 0. Finally add 1 to wcwaf(b) = 2 to get 0, but

wcwaf(a) = 1 so add 1 one more time to get 1. We end with wf(a) = 1, wf(b) = 1

and wf(c) = 0.

0

2

2
wa−→

1

2

2

1

2

2
wc−→

1

2

0

1

2

0
wb−→

1

0

0
→

1

1

0
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There is a bijection between order ideals of a poset P and order-reversing maps in

F1(P ). Specifically, an order-reversing map in F1(P ) is simply the indicator function

of an order ideal I ∈ J(P ). We extend this to an equivariant bijection Fk(P ) →

J (P × [k]) which sends w to ρJ , meaning the following diagram commutes.

Fk(P )

J (P × [k])

Fk(P )

J (P × [k])
ρJ

w

We will call the chains {(x, 1), (x, 2), . . . , (x, k)} ⊆ P × [k], for x ∈ P , the fibers

of P × [k], and construct an equivariant bijection that first sends wx to order-ideal

toggling down the fiber {(x, 1), (x, 2), . . . , (x, k)}.

Lemma 3.2.6. There is an equivariant bijection between Fk (P ) and J (P×[k]) which

sends wx to the toggle product τ(x,1)τ(x,2) . . . τ(x,k).

Proof. First, we will establish a bijection ϕ between Fk(P ) and J (P × [k]). Given

f ∈ Fk(P ), we will construct an order ideal J(f) ∈ J (P × [k]) by the follow-

ing rule: (x, i) ∈ J(f) if and only if f(x) ≤ i. We claim the map ϕ(f) = J(f)

is a bijection. The injective property of ϕ comes from the fact that J(f) = J(g)

would imply, for each fiber {(x, 1), (x, 2), . . . , (x, k)} there is maximum ix such that

{(x, 1), (x, 2), . . . , (x, ix)} ⊂ J(f) = J(g), which gives us f(x) = g(x) = ix for each

x ∈ P . To see that ϕ is surjective, let J be an order ideal of P × [k]. Again, for each

fiber {(x, 1), (x, 2), . . . , (x, k)} there is maximum ix such that {(x, 1), (x, 2), . . . , (x, ix)} ⊂

J . Define fJ : P → [0, k] to be the map such that fJ(x) = ix. We will show is

fJ ∈ Fk. Suppose not, i.e., that fJ(x) > fJ(y) where x >P y. This would imply

that (x, fJ(x)) ∈ J and (y, fJ(x)) ̸∈ J . But J is an order ideal and (x, fJ(x)) >P×[k]
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(y, fJ(x)), thus a contradiction, and it must be that fJ ∈ Fk.

We will now complete the proof by fixing f and x and showing

ϕ(wx(f)) = τ(x,1)τ(x,2) . . . τ(x,k)(ϕ(f)).

Let m = max({f(y) : y ⋖ x, for y ∈ P} ∪ {0}) and M = min({f(y) : x ⋖ y, for y ∈

P} ∪ {k}) so m ≤ f(x) ≤M . There are two cases:

• Case 1. If f(x) < M , then (wx(f))(x) = f(x) + 1.

• Case 2. If f(x) = M , then f(x) + 1 is greater than M so we increment through

values modulo k + 1 until we get to (wx(f))(x) = m.

On the other hand, we consider the action of τ = τ(x,1)τ(x,2) . . . τ(x,k) on ϕ(f).

Recall that τ(x,i) does not change the order ideal whenever (x, i) is not maximal in

the order ideal or minimal in the complement of the order ideal. Because of this there

are only two outcomes of τ(S(f)), either one element was added to top of the order

ideal, or elements were removed until removing anymore would result in a non order

ideal. But this lines up with the two cases above, which completes the proof.

Theorem 3.2.7. Let P be a finite poset with some linear extension ℓ ∈ L(P ). There

is an equivariant bijection between order-reversing functions Fk (P ), and order ideals

of P × [k], J (P × [k]), which sends whirling, w = wx1wx2 · · ·wxn, to rowmotion on

J (P × [k]), ρJ .

Proof. Since ρJ can be expressed as a product of toggles which go down a linear

extension, we will construct a linear extension on P × [k] and use Lemma 3.2.6. We

define a linear extension ℓk on P × [k] as ℓk(x, i) = k(ℓ(x)−1)+ i. Here is an example
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linear extension ℓ on a poset P element poset and the corresponding linear extension

ℓ4 on P × [4].

ℓ

2

1

3

ℓ4

5

1

9

6

2

10

7

3

11

8

4

12

Using ℓk rowmotion can be expressed as a product of toggles which go down the

saturated chains of P × [k]. By Lemma 3.2.6 there is an equivariant bijection from

a products of toggles on these saturated chains to whirling at an element of P . The

product of these whirls goes down the linear extension ℓ and thus is the whirl on

order-reversing functions of P as desired.

As stated before, a consequence of this theorem is that the definition of whirl is

well-defined for any linear extension of P . This is because any linear extension of P

will give us a linear extension of P × [k] as seen in the proof of the theorem, and the

order in which we toggle order-ideal rowmotion does not matter.

Similar to jump snakes from Lemma 1.2.10 or chunks from Theorem 3.1.3 we can

partition orbits of w in neatly snakes.

Definition 3.2.8. Let P be finite poset. For any x ∈ P and f ∈ Fk(P ), define (x, f)

to be a whirl element. The whirl element (y, g) is whirl successive of (x, f) if either:

1. y = x and g(y) = w(f(x)) = f(x) + 1, or
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2. x covers y, f = g, and f(x) = g(y).

We can think of whirl successive elements as being whirl elements who are one

step away from each other. Either moving down the poset one element or whirling

the function takes you from the whirl element (x, f) to the successive whirl element

(y, g).

Example 3.2.9. Here is a w-orbit of F2([2]× [2])

2

2 1

0

w−→

2

1 2

1

w−→

2

2 0

0

w−→

1

0 1

0

w−→

2

1 0

0

w

The two red-highlighted labels are whirl successive because they are in the same

position in the poset but the second red label is one larger. The two green-highlighted

labels are also whirl successive because one element covers the other and they both

have the same label.

Two whirl elements (x, f) and (y, g) are snake connected if there exists a sequence

of whirl successive elements {(x, f) = (x0, f0), (x1, f1), . . . , (xp, fp) = (y, g)}.

Definition 3.2.10. A snake is a maximal set of snake connected whirl elements, that

is, if (x, f) is in a snake and (x, f) is snake connected to (y, g), then (y, g) is in the

snake.

Example 3.2.11. Using the orbit from the previous example we expand the snake

successive elements to highlight the four snakes of the whirling orbit board. In this

case, one can think of each snake starting at a 0 in the top element and ending at a
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2 in the bottom element.

2

2 1

0

w−→

2

1 2

1

w−→

2

2 0

0

w−→

1

0 1

0

w−→

2

1 0

0

w

Partitioning orbits into snakes will help us prove Theorem 4.1.5, as well as give a

new proof of Theorem 2.5.2.

3.3 Revisiting homomesy for ρJ on [a]× [b]

Theorem 3.2.7 gives an equivariant bijection between J ([a]× [b]) and Fb([a]) carrying

ρJ to w. In this section we will give another proof for Theorem 2.5.2 by partitioning

orbit boards into snakes given by Definition 3.2.10. We will also prove a new result

on the snake decomposition itself. We begin with an example that demonstrates the

bijection as created in the proof of Theorem 3.2.7.

Example 3.3.1. Here is an orbit of order-ideal rowmotion on J ([3] × [4]) and be-

low each order ideal is the associated order-reversing function. The order-reversing

function is essentially counting the number of order-ideal elements in each fiber of

[3]× [4].
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4

1

0

2

2

1

3

2

2

4

3

0

4

4

1

2

2

2

3

0

0

The order reversing maps of Fb[a] will be written for convenience in one-line

notation as f(a)f(a− 1) . . . f(1) where f(a) ≤ f(a− 1) ≤ · · · ≤ f(1). For example

4

4

1

→ 144

Example 3.3.2. Here is an orbit of F4[3]. Each row is an order-reversing function

where the row after is the whirl from left to right of the row before it. One should
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think of an orbit board as being on a cylinder so the whirl of the last row is the first

row.
≤

w

0 0
1
2 2

3
4

0
1
2 2

3
4 4

0
1
2 2 2

3
4

Given an orbit board O of Fb[a] under the action of w, we can partition O into

snakes according to Definition 3.2.10.

Lemma 3.3.3. For an orbit board of Fk[n] with whirl element, (x, f), exactly one of

the following holds:

1. wf(x) = f(x) + 1, or

2. f(x− 1) = f(x).

Proof. Suppose we have a whirl element (x, f) in an orbit board of Fk[n]. If wf(x) =

f(x) + 1, then we are done. If not, then wf(x) + 1 > wf(x − 1). But since f(x) ≤

f(x− 1) it must be that wf(x) = wf(x− 1).

We can interpret this lemma as giving us the two ways a snake can move through

an orbit board of Fk[n]. At every step it either moves down (increasing the value by

one), or to the right (to a lower poset element). Looking at the orbit board above

you will notice at any number i either i is to the right of it or i+ 1 is below it.

Lemma 3.3.4. For any orbit board of the whirling action on Fb([a]), the length of

each snake is a+ b.
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Proof. Since the snake contains (a, f) where f(a) = 0, we will use this as the snakes

starting square. The snake will either have a square to the right or below in the orbit

board. This process continues until it ends at (1, wb(f)), where wb(f)(1) = b. Thus

the snake will effectively move a−1 places to the right in the orbit board and b places

down for a total of a+ b elements in the snake.

Example 3.3.5. Below is the orbit board of 003 ∈ F4([3]). The board is partitioned

into 3 snakes of length 7.
0 0

1
2 2

3
4

0
1
2 2

3
4 4

0
1
2 2 2

3
4

We can think of snakes in this setting as either moving right or down the orbit

board. When a snake moves down, the label inside the boxes increases, but when we

move to the right, the label stays the same. Because of this, we don’t need to write

the numbers in the boxes once the snakes are outlined. The number in the box will

always be the same as the number of rows the snake has moved down the orbit board.

This picture alone can recover an entire orbit of rowmotion on order ideals of [3]× [4].



43

3.3.1 Right-down snakes

We now take a brief detour to examine these numberless snakes that show up in the

orbit from the last example. In this subsection we will see a connection to generalized

leftward cyclic shift on binary strings as defined in Definition 3.3.8. This section could

be written as a study of lattice walks with north steps and east steps, but to make

the connection clear we will call these lattice walks snakes even outside of the orbit

board setting. A natural avatar of lattice walks with two directions is binary strings.

Definition 3.3.6. We define a right-down snake to be a walk on a chess board of

length m and width k from the top left, (1, 1), of the board to the bottom right,

(k,m), using only unit length down and right steps. We denote each walk with a

word composed of k − 1 r’s and m − 1 d’s. Each r represents a right step and each

d represents a down step. Let Sk×m be the set of all such words.

By Lemma 3.3.4 this definition lines up with the snakes in the whirling orbit board

of Fa([b]). To make that connection more concrete, we showed from the starting

position of a snake there were b steps down and a − 1 steps to the right. So the

snakes from Fa([b]) are in bijection with the snakes from Sa×b+1. For the rest of

this subsection we use the term “snake” to mean right-down snake. The previous

definition gives us two ways to represent a snake, either as a block diagram on a chess

board or as an element of Sk×m. For any ς ∈ Sk×m let ς(i) be the ith element in ς.

For example if ς = rdrrdr, then ς(2) = d.

Example 3.3.7. The snake ς = ddrrd has the following block diagram.

0
1
2 2 3

4
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It is not hard to see that #Sk×m =
(
m+k−2
k−1

)
, since of the m + k − 2 elements in

the word definition of a snake, we choose k − 1 of them to be r.

Recently, a simple generalization of leftward cyclic shift on binary strings was

introduced by Hanaoka and Sadahiro [17].

Definition 3.3.8. [17] Fix j ≤ n. Let {0, 1}n be the set of binary strings of length

n and fix j ≤ n. We define Cj : {0, 1}n → {0, 1}n as follows: Let s = s0s1 . . . sn−1 ∈

{0, 1}n be a binary string of length n. Set

Cj(s) =


sp+1sp+2 . . . sn−1sp . . . s1 if p < j, sw = 0 and si = 1 for all i < p

sjsj+1 . . . sn−1sj−1 . . . s1 otherwise.

Example 3.3.9. Consider 1110000010 ∈ {0, 1}10. The first three entries are 1 with

the fourth entry being 0, thus, for all j ≥ 4, they are reversed and put at the end of

the string,

Cj(1110000010) = 0000100111.

On the otherhand, if j = 2, then we just move the first 2 1’s over,

C2(1110000010) = 1000001011.

Notice that when j = 1 we recover the usual definition of bitstring rotation. This

generalization comes from a generalization of independent sets called j-independent

sets of the path graph. A set is j-independent if there are at least j 0’s separating

each pair of 1’s. We consider Cm to act on elements of Sm×k, where r ↔ 0 and d↔ 1.

Example 3.3.10. Fix ς = ddrrd ∈ S3×4. The first r shows up in the 3rd position
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so we reverse the first three letter and place them on the end of the word. Therefore

we see

C4(ddrrd) = rdrdd.

Under this action we get the symmetric homomesy on snakes similar to Theorem

1.2.8, but it requires less work to show under the action of generalized leftward cyclic

shift. Let χi(ς) = 1 if the ith element in the word is r for all i ∈ [m+ k − 2].

Theorem 3.3.11. Fix positive integers k and m and let Cm act on Sk×m via Defini-

tion 3.3.8. Then the statistic χi − χm+k−1−i is 0-mesic with respect to the action of

Cm.

A stronger version of Theorem 3.3.11 is given in [17, Theorem 2]. We will prove

this weaker version.

Proof. It suffices to show there is a bijection between the r’s that show up in the

ith position and the r’s that show up in the m + k − 1 − ith position. Fix a snake

ς ∈ Sk×m and suppose ς(i) = r. Let j be the number of r’s to the left of the ith

position. Let ς ′ = Cj+1
m (ς) and we will argue ς(m+ k − 1− i) = r. In the case where

j = 0, ς(i) is the first r on the left so ς ′ = Cm(ς) moves that r i positions to the right

but this means ς(m + k − 1 − i) = r. Now assume this holds for up to j r’s before

the ith position. Since this r is the j + 1st r, let w be the position of the jth r in

ς. By assumption Cj+1
m ς(m + k − 1 − w) = r, then applying Cm one more time will

push this r i− w positions to the left, but this gives us Cj+2
m ς(m+ k − 1− i) = r as

desired.

Example 3.3.12. Here is an example of this homomesy in the case where k = 3 and

m = 5. The bottom row is the number of r’s in each column. Notice that the bottom
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rows are a palindrome.

r r d d d d
r d d d d r

d d d d r r

2 1 0 0 1 2

r d r d d d
d r d d d r

d d d r r d
1 1 1 1 1 1

r d d r d d
d d r d d r

d d r r d d
1 0 2 2 0 1

d r d r d d
d r d d r d
d d r d r d
0 2 1 1 2 0

d r r d d d
r d d d r d
d d d r d r

1 1 1 1 1 1

We conjecture a stronger version of this homomesy for the block diagrams.

Conjecture 3.3.13. Two positions on a board are symmetrically placed if one is

in the place of the other after 180-degree rotation. Symmetric placed positions on a

board are visited by a right-down snake the same number of times during an orbit of

Cm.

Example 3.3.14. For each orbit of C4, the red square is part of a snake the same

number of times the blue square is.

0
1
2 3

4

C4−→

0 1
2
3
4

C4−→

0
1

3 4

C4

0
1 2

3
4

C4−→

0 1

3
4

C4−→

0
1
2

3 4

C4
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0 1 2
2
3
4

C4−→

0 1

3 4

C4−→

0
1
2
2 3 4

C4

0
1

3
4

C4

There is a natural bijection from snakes to compositions of m+ k − 1 of length k

where each component represents the number of snake elements in a column of the

block diagram. As it stands a direct relation is not known, but this looks similar to

work in [2, Theorem 6.5].

Example 3.3.15. Given the snake ς = ddrrd ∈ S3×4 we get the composition (3, 1, 2).

0
1
2 2 3

4
3 1 2

This composition can also be obtained by counting the number of d’s between

successive r’s and adding one.

ddrrd→ (3, 1, 2)

Since the map Cm reverses the first set of elements of ς ∈ Sk×m up to the first r
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and places them at the end of the word, it makes senses that the effect of Cm through

the bijection to compositions is leftward cyclic shift.

Lemma 3.3.16. Fix k,m for Sk×m. Let c be leftward-cyclic shift on compositions.

There is an equivariant bijection between Sm×k and compositions of m+k−1 of length

k which sends Cm to c.

Proof. We have established a bijection between Sm×k and compositions of m+ k− 1

of length k defined explicitly in Example 3.3.15. There are only m − 1 d’s in each

element of Sm×k so, we will always be in the initial case of the piecewise definition

of Cm given in Definition 3.3.8. Thus, Cm will always have the effect of taking the

first string of d’s and first r, flipping them and placing them at the end of the string.

This results in leftward cyclic shift on the composition level as desired.

Example 3.3.17. Let ς = ddrrd ∈ S3×4.

ddrrd

(3, 1, 2)

rdrdd

(1, 2, 3)
c

C4

Now we remind ourselves that these snakes come from orbit board of Fb([a]), with

our new interpretations we can notice something nice about the orbit boards that

would have been missed otherwise.

Example 3.3.18. An orbit board of F4([3]). The orbit contains three snakes, (1, 3, 3)
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in orange, (3, 3, 1) in blue, and (3, 1, 3) in green.

This motives the next theorem, which states that the snakes of a whirling orbit

board of Fb([a]) are cyclic shifts of each other.

Definition 3.3.19. Let ς1 and ς2 be snakes in an orbit board of Fb([a]). We say ς2

is in front of ς1 if starting at a position in ς1 not in the first column and moving

diagonally down-left one spot in the orbit board is a position in ς2.

So using the last example, the blue snake is in front of the orange snake, which is

in front of the green snake, which is in front of the blue snake.

Lemma 3.3.20. Let ς1 and ς2 be snakes in an orbit board of Fb([a]) such at ς2 is in

front of ς1. Then ς2 = Ca(ς1).

Proof. Take a position in ς1 and move down and to the left, that spot is in ς2. This

tells us the first a − 1 columns of ς2 are the last a − 1 columns of ς1 shifted down.

Finally fill in the last column with what is need to be length a+ b, but this is exactly

what was in the first column. This description is leftward cyclic shift.

Now that we have connected the snakes of an orbit board of Fb([a]) and leftward

cyclic shift on compositions, we have a limit on how large any orbit can be.

Corollary 3.3.21. The number of snakes in an orbit board of Fb([a]) divides a.
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Proof. By Theorem 3.3.20 the number of snakes cannot be larger than the order of

leftward cyclic shift on a composition. Since the width of the board is a, the number

of snakes must divide a.

We will now focus our attention on reproving Theorem 2.5.2 by defining an action

on snakes in an orbit board and showing this action does not change the cardinality

of the orbit.

Definition 3.3.22. We define a process called snake promotion on an orbit board as

follows:

1. Pick a snake with more than one element in the right-most column and call it

ς. Delete the final element of ς. This creates a hole.

2. Move down-left diagonally from the hole and swap that position with the hole.

Do this until the hole is in the leftmost column.

3. Since the hole has moved over a − 1 snakes, the hole is now above ς. Add the

hole back onto the ς at the beginning.

Example 3.3.23. Here is an example of snake promotion step by step. We will

choose the orange snake to perform snake promotion on.

0 0
1
2 2

3
4

0
1
2 2

3
4 4

0
1
2 2 2

3
4

→

0 0
1
2 2

3

0
1
2 2

3
4 4

0
1
2 2 2

3
4

→

0 0
1
2 2

3
3

0
1
2 2

3
4

0
1
2 2 2

3
4

→

0 0
1
2 2

3
3

0
1
2 2

3
1 4

0
1

2 2

3
4

→

1 1
2
3 3

4
3

0
1
2 2

3
1 4

0
1
0 2 2

3
4
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The orange snake started at (1, 3, 3) and after snake promotion became (2, 3, 2).

Since this process removes a snake block from the last columns and adds one to the

first, the effect of snake promotion on the compositions is subtracting 1 from the last

position and adding 1 to the first position. Snake promotion also changes the other

snakes in the orbit board as well. However, leftward cyclic shift on a composition of

a snake give you another snake in the orbit board, so the effect of snake promotion

on the other snakes is similar to that of the one snake promotion was preformed on.

Lemma 3.3.24. Given an orbit of whirling on Fb([a]), snake promotion does not

change the sum of the labels of the orbit board.

Proof. We will inspect what happens to the sum of the labels of an orbit board of

Fb([a]) step by step through snake promotion. Taking away the last element of ς

reduces the sum of the all labels by b. Next swapping snake positions with the hole

decreases the sum of all the labels by 1 each time for a net loss of a − 1. Finally

adding the block to the start of ς increases the labels all other snake elements by 1

for, resulting in a net gain of b+ a− 1.

To derive Theroem 2.5.2 from the lemma, it will suffice to show that for any orbit

board there is a sequence of snake promotions taking us to an orbit board whose

composition is almost all 1’s.

Proof of Theorem 2.5.2. Start with an orbit board O of J ([a]× [b]). Let ς be a snake

in O. We will follow this process:

1. Perform snake promotion until the rightmost entry of the composition is 1.

2. Perform leftward cyclic shift on the composition to get another snake in the

orbit board.
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3. Repeat steps 1 and 2 until the you have a snake with composition (b+1, 1, . . . , 1).

We complete this proof by showing an orbit with snake (b+1, 1, . . . , 1) has cardinality

(a+ b)ab/2. A generic snake with composition (1, 1, . . . , b+ 1, 1, . . . , 1) where b is in

the dth entry, in this orbit will have cardinality 1 + 2 + · · ·+ b from the steps downs

and a− d copies of b. There are a snakes so we have that the cardinality is

a

(
b+ 1

2

)
+ b

(
a

2

)
.

But this simplifies to (a + b)ab/2. Since the total number of rows in one orbit is

(a+ b), dividing by (a+ b) gives us the average ab/2.

Example 3.3.25. Start with the orbit in F6([4]) that contains the snake with com-

position (3, 4, 1, 2). Perform snake promotion once to get (4, 4, 1, 1). Perform leftward

cyclic shift once on the composition to get (4, 1, 1, 4). Perform snake promotion three

times to get (7, 1, 1, 1).

0 2 3 3
1 3 3 4
2 2 4 5
0 3 5 6
1 4 6 6
2 5 5 5
3 3 3 6
0 0 4 4
0 1 1 5
1 1 2 6

Blue snake: 33
Red snake: 31
Green snake: 25
Orange snake: 31

Total: 120

0 0 0 0
0 0 0 1
0 0 1 2
0 1 2 3
1 2 3 4
2 3 4 5
3 4 5 6
4 5 6 6
5 6 6 6
6 6 6 6

Blue snake: 21
Red snake: 27
Green snake: 33
Orange snake: 39

Total: 120

On the left is the orbit that has snake composition (3, 4, 1, 2), and on the right is the
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orbit that has snake composition (7, 1, 1, 1). The sum of all the labels of each orbit

board is (6+4)(4)(6)
2

= 120.

It was observed by Brouwer and Schrijver [5] that order of rowmotion on J([a]×[b])

is a + b. This can also be seen from the last Corollary by observing that the strings

of length a being rotated are in fact compositions of a + b. Since these components

are in bijection with the length of the snake segments, we get that the corresponding

super orbit board must be of length a+ b.

Corollary 3.3.26. In an orbit of whirling functions of Fb([a]), the average sum of

the labels on the snakes is b(a+ b)/2.

Proof. By Theorem 2.5.2 the sum of the labels over an entire super orbit board is

(a + b)ab/2, and by Corollary 3.3.21 the number of snakes in a super orbit board is

a. The result follows.



Chapter 4

Periodicity and homomesy for
rowmotion on V × [k]

In this section we define the object of interest, a wedge poset cross a chain poset, and

establish interesting homomesies for order-ideal rowmotion.

4.1 A wedge cross a chain poset

Definition 4.1.1. Let V be the wedge poset with Hasse diagram and define

Vk = V × [k], where [k] is the chain poset.

Example 4.1.2. The Hasse diagram of V4 is shown in Figure ??.

We will often want to discuss specific nodes of these posets, so we establish the

following labeling.

54
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Figure 4.1: V4 = V × [4]

Notation 4.1.3. We label the nodes in Vk as follows

ℓ1

c1

r1

ℓ2

c2

r2

ℓ3

c3

r3

ℓn

cn

rn

...

...

...

With just this notation, we are ready to state the main theorems of this section.

Theorem 4.1.4. The order of ρJ , order-ideal rowmotion, on J (Vk) is 2(k + 2).

Theorem 4.1.5. If χx is the indicator function for the node x, then for the action

of ρJ on J (Vk)

1. The statistic χℓi − χri is 0-mesic for all i ∈ {0 . . . k}.

2. The statistic χℓ1 + χr1 − χck is 2(k−1)
k+2

-mesic.
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Example 4.1.6. This is an example of an orbit of ρJ on J (V4). Notice the size of

the orbit, 4, divides 2(4 + 2) = 12.

ρJ−→ ρJ−→ ρJ−→ ρJ

To prove these theorems we will construct an equivariant bijection from J (Vk) to

triples with a unique max center entry, instead of studying ρJ on J (Vk) directly.

Using Theorem 3.2.7 the order ideals of Vk are in bijection with Fk(V), the set

of order-reversing functions. An order-reversing function f = (ℓ, c, r) on V assigns a

value to each element of V as follows:

ℓ

c

r

under the condition that c ≤ ℓ and c ≤ r. Furthermore, this bijection carries rowmo-

tion on J (Vk) to whirling down a linear extension of V, which is easily described in

terms of certain triples.

We denote this bijection by ϕ. The bijection ϕ sends an order ideal I to a function

(ℓ, c, r) by associating ℓ, c, and r with the number of elements of the order ideal in

the left, center, and right fibers respectively.
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ϕ←→
1

3

3
←→ (1, 3, 3)

Example 4.1.7. Here is the orbit of F4(V) containing (1, 3, 3), matching Example

4.1.6:

(1, 3, 3)
w−→ (2, 4, 0)

w−→ (3, 3, 1)
w−→ (0, 4, 2)

w

Proposition 4.1.8. Let |J (Vk)| be the number of order ideals of Vk.

|J (Vk)| =
k∑

i=1

i2 =
k(k + 1)(2k + 1)

6

Proof. We first count how many order-reversing functions f in Fk(V). For each value

f(c) there are f(c) independent choices for f(ℓ) and f(r) which result in a order-

reversing function. By Theorem 3.2.7, Fk(V) is in bijection with J (Vk).

4.2 Center-seeking snakes

In proving the order of ρJ on J (Vk) is 2(k+2) we end up proving something stronger,

that is, that ρk+1
J (I) results in a order ideal that has been reflected across the the

center chain. To prove this we will investigate the snakes that arise from repeatedly

whirling an order-reversing function.
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Recall from Definition 3.2.10 that given a whirling orbit board, O = {f, w(f), w2(f), . . . }

of w on Fk(V ), a snake ς is a maximal set of snake connected elements. Here are two

orbit boards of F4(V), one with six snakes and one with two snakes. Notice that the

snakes in the second orbit have two “starting” positions.

1
2
3
4 4

0
1
2
33

4
0
1
2 2

3
4

0
1
2
3
44

0
1
2
3 3

4
0
1

22
3
4

0

0 2 0
1 3 1
2 4 2
3 3 3
0 3 0
1 4 12 2 2

We can think about snakes as either starting on the left, or the right; or both left

and right. We call the latter two-tailed. Since these snakes move down the orbit board

at every step except for one, we have two useful interpretations for them. For one we

think of these snakes as a sequence of function values in the orbit board which start at

0 and end at k, where one value is repeated when moving into the center. Since these

snakes move from the outer columns of the orbit board to the center column, we can

think of these snakes as center-seeking snakes to not confuse them with right-down

snakes. Here we isolate one example of a left snake ς = (0, 1, 2, 2, 3, 4) visualized in a

orbit board of F4(V).
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1
2
3
4 4

0
1
2
33

4
0
1
2 2

3
4

0
1
2
3
44

0
1
2
3 3

4
0
1

22
3
4

0

The first observation is that all snakes are of length k + 2. This is clear since there

are k+1 elements 0, ..., k and one of them will be doubled. We can also write a snake

as a composition as we did in Section 3, but we would lose information about which

side the snake started on. Define cc(ς) to be the number of blocks of the snake in the

center column and oc(ς) to be the number of blocks of ς in outer columns. For snakes

that begin on either the left or the right oc(ς) = (k + 2)− cc(ς).

Lemma 4.2.1. Let S be the set of snakes in an orbit board O of w on Fk(V ), and

let #O be the length of O. ∑
ς∈S

oc(ς) = 2#O

Proof. Since oc(ς) counts the number of blocks of ς not in the center column, summing

over all snakes gives the number of blocks in the left and right column.

Similarly, if Sr is just the snakes that appear in the right most column, then

∑
ς∈Sr

oc(ς) = #O.
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Example 4.2.2. Here is the previous example with all the snakes colored. Notice

that the number of blocks in the right columns of the green, yellow, and teal snakes

are 4, 5, 3 respectively and the orbit board is of length 12.

1
2
3
4 4

0
1
2
33

4
0
1
2 2

3
4

0
1
2
3
44

0
1
2
3 3

4
0
1

22
3
4

0

In the setting of Fk(V), as long as we know the number of blocks of a snake in

the outer column and which sides it started on, we can recover the entire snake. Now

it would be helpful to repeat some of the process from right-down snakes, so we will

define what it means for one snake to be in front of another snake.

Definition 4.2.3. We will place a circular order on the snakes. Let ς1 and ς2 be

snakes in an orbit board of Fk(V). We say ς2 is in front of ς1 if starting at a position

in ς1 in the center column and moving down one position in the orbit board is a

position in ς2 or ς1. When referring to a sequence of snakes that are in front of each

other we will call them consecutive.

Example 4.2.4. Look back at Example 4.2.2. The red snake is in front of the green

snake, and the yellow snake is in front of the red snake.

Lemma 4.2.5. Assume an orbit board O of w on Fk(V ) has no two-tailed snakes.

Let ς1, ς2, and ς3 be three consecutive snakes, that is, ς3 is in front of ς2 which is in
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front of ς1 in O. Then,

oc(ς3) = 2(k + 2)− (oc(ς1) + oc(ς2)).

Otherwise, if there are two-tailed snakes, then ς2, cc(ς1) + cc(ς2) = k + 2.

Proof. The third snake, ς3, begins beneath ς1, then ς3 will go into the center when ς2

terminates. So

oc(ς3) = cc(ς1)+cc(ς2) = (k+2−oc(ς1))+(k+2−oc(ς2)) = 2(k+2)−(oc(ς1)+oc(ς2)).

Now if our orbit contains two tailed snakes, then ς2 needs only to wait for ς1 to

terminate so we get cc(ς2) = k + 2− cc(ς1).

Example 4.2.6. In Example 4.2.2, the oc statistic is 5 for the blue snake, 4 for the

green one, and 3 for the red one. We see 2(4 + 2)− (5 + 4) = 3.

Lemma 4.2.7. Given an orbit board without two-tailed snakes, let ς1, ς2, ς3, and ς4

be consecutive, then

oc(ς4) = oc(ς1)

Proof. If we apply Lemma 4.2.5 to oc(ς4) we see

oc(ς4) = 2(k + 2)− (oc(ς3) + oc(ς2)).

If we apply the lemma to ς3, we get

oc(ς4) = 2(k + 2)− (2(k + 2)− ((oc(ς2) + oc(ς1))) + oc(ς2)),
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which reduces to oc(ς1).

Notice that we are not claiming the board starts to repeat, since by parity ς4 will

start on the opposite side of ς1.

Lemma 4.2.8. Let O be an orbit board of w on Fk(V). If O is without two-tailed

snakes, then there are 6 unique snakes. If O has two-tailed snakes, then there are

only two unique snakes.

Proof. First suppose the orbit board does not contain two-tailed snakes. Let ς1, . . . , ς7

be seven consecutive snakes in an orbit board of Fk(V). We will show ς1 = ς7. A

consequence of Lemma 4.2.7 is oc(ςi) = oc(ςi+3). Since the parity of which side the

snakes starts on changes for each consecutive snake, we have oc(ςi) = oc(ςi+6), and

they start on the same side. So we know ςi and ςi+6 are the same, giving us 6 unique

snakes.

Now assume the orbit contains two-tailed snakes. Let ς1, . . . , ς3 be three consecu-

tive sankes in an orbit board of Fk(V). By Lemma 4.2.5, we know cc(ςi) + cc(ςi+1) =

k + 2, so cc(ςi) = cc(ςi+2), and since two-tailed snakes start on both the left and the

right, snakes ςi and ςi+2 are the same, giving us 2 unique snakes.

Theorem 4.2.9. The length of an orbit board of w on Fk(V ) without two-tailed

snakes is 2(k + 2), and the length of an orbit board with two-tailed snakes is k + 2.

Proof. First assume O is without two-tailed snakes. Since there are 6 unique snakes,

by Lemma 4.2.1 we have

oc(ς1) + oc(ς2) + oc(ς3) + oc(ς4) + oc(ς5) + oc(ς6) = 2#O.
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Let oc(ςi) = i and oc(ς2) = j, then by Lemma 4.2.5 we have

i+ j + 2(k + 2)− (i+ j) + i+ j + 2(k + 2)− (i+ j) = 2#O.

But this gives us

#O = 2(k + 2).

The proof follows in a similar manner for orbits containing two-tailed snakes.

Theorem 4.2.10. Let (a, b, c) ∈ Fk(V), then wk+2(a, b, c) = (c, b, a).

Proof. First assume a = c so the orbit board has two-tailed snakes. By Lemma 4.2.8,

we know there are exactly two snakes, call them ς1 and ς2. By Lemma 4.2.5, we know

cc(ς1) + cc(ς2) = k + 2. Since there are only two snakes, k + 2 counts the number of

labels in the center column of one orbit in the orbit board. Thus the orbit board of

just one orbit will have exactly k + 2 rows. Since the orbit board has exactly k + 2

rows, wk+2(a, b, c) = (a, b, c), but a = c so we have satisfied the conclusion of the

theorem.

Now let O be the orbit board of w that contains (a, b, c) with a ̸= c. Since a ̸= c,

the orbit board is without two-tailed snakes, so there will be a left snake that ‘moves’

into the center, that is, there is an element (h, h, g) ∈ O (as in the third row of the

red snake in Example 4.2.2). Call the snake that passes through both h’s, ς1, and the

snake that passes through g, ς2. Let ς3 and ς4 be the next two consecutive snakes.

By 4.2.5 we know if oc(ς1) = i and oc(ς2) = j, then oc(ς3) = 2(k + 2) − (i + j) and

oc(ς4) = i. The number of iterations of w between (h, h, g) and the triple where ς4

bends in is

k + 2− oc(ς1) + k + 2− oc(ς2) + k + 2− oc(ς3).
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Which simplifies to

3(k + 2)− (i+ j + 2(k + 2)− (i+ j) = k + 2.

It follows that the number of iterations between (h, h, g) and (g, h, h) is k+2. There

is a power of w, say e, such that we(a, b, c) = (h, h, g) thus,

wk+2(a, b, c) = w−ewk+2we(a, b, c) = w−ewk+2(h, h, g) = w−e(g, h, h) = (c, b, a).

Now that we have covered periodicity, we will cover the previously mentioned

homomesies.

Proof of Theorem 4.1.5. The statistic χℓi − χri being 0-mesic comes quickly from

Theorem 4.2.10. Since (a, b, c) and (c, b, a) both show up in the same orbit, there is

a bijection between each ℓi in an orbit of order-ideal rowmotion and a corresponding

ri that shows up after k + 2 iterations of rowmotion.

Now we will show χℓ1(I) +χr1(I)−χck(I) is
2(k−1)
k+2

-mesic. If I is an order ideal of

V×k in an orbit O of order-ideal rowmotion ρJ , then there is a triple (ℓ, c, r) ∈ Fk(V)

in bijection with I given by Theorem 3.2.7. We know if ℓ1 ∈ I, then ℓ > 0. Also

if r1 ∈ I, then r > 0. Finally if ck ∈ I, then c = k. There are two types of orbits,

those where ℓ = r and those where ℓ ̸= r. First assume ℓ ̸= r. We will investigate the

orbit of whirling generated by (ℓ, c, r). By Lemma 4.2.8 we know there are there are

6 unique snakes in the orbit. By Theorem 4.2.9, we know the orbit of length 2(k+2),

and thus so is each column of the orbit board, that gives us in total 4(k+2) entries in

the left and right column with six of those being 0. So there are 4(k + 2)− 6 entries
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that are not 0 in the left and right columns of the orbit board; thus, they contribute

to either the number of r1 or ℓ1. The number of elements in the center column which

are k is 6 because there are 6 snakes that end at k, all in the center. Therefore,∑
I∈O χℓ1 +χr1 −χck = 4(k+2)− 12. We divide by the length of the orbit to get the

average ∑
I∈O χℓ1(I) + χr1(I)− χck(I)

#O
=

4(k + 2)− 12

2(k + 2)
=

2(k − 1)

k + 2
.

The case where ℓ = r follows similarly: By Lemma 4.2.8 and Theorem 4.2.9, there

are 2 unique snakes in an orbit of whirling of length k + 2. that give us a total 2k

nonzero entries in the left and right columns. We subtract the two k’s in the center

column to get
∑

I∈O χℓ1 + χr1 − χck = 2k − 2. Divide by the length of the orbit to

get the result.

4.3 Another homomesy

There is another homomesy which does not have an intuitive understanding from

order ideals but is easily understood from snakes. Let I be an order ideal in J (V×k),

and we define the statistic fi = χℓi + χri + χci−1
, which has the flux-capacitor shape

seen in Figure 4.2.

Lemma 4.3.1. Let fi = χℓi +χri +χci−1
. The difference fi+1−fi is

3
k+2

-mesic under

the action of rowmotion on order ideals of J (V × [k]).
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...

...

...

...

...

...

Figure 4.2: fi = χℓi + χri + χci−1

Proof. Notice that if I is an order ideal of V × [k] and ϕ(I) = (ℓ, c, r), then

(fi+1 − fi)(I) =



1 if ℓ = i+ 1 and r ̸= i+ 1,

1 if ℓ ̸= i+ 1 and r = i+ 1,

1 if c = i

2 if ℓ = r = i+ 1,

0 otherwise.

So (fi+1 − fi) counts the number of times i+ 1 appears in the left or right column of

the orbit board, and the number of times i appears in the center column of the orbit

board. We split this proof into two cases

Case 1. If a snake has a block labeled i + 1 in the left or right column of the

orbit board, then it won’t have a block labeled i in the center column of the orbit and

vise-versa. Therefore, if there are no two-tailed snakes, then by Lemma 4.2.8 there

are six unique snakes and thus the sum of (fi+1 − fi) over the orbit is 6
2(k+2)

= 3
k+2

.
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Case 2. Similarly, if there are two-tailed snakes, then by Lemma 4.2.8 there are

two unique snakes, one with a block labeled i + 1 in the left and right column twice

and one block with label i in the center; and thus, the sum of (fi+1 − fi) over the

orbit is 3
k+2

This lemma can be generalized to differences between any two flux capacitors, not

just successive ones.

Theorem 4.3.2. For k > 1. Let fi = χℓi + χri + χci−1
. The difference fi − fj is

3(i−j)
k+2

-mesic under the action of rowmotion on order ideals of J (V × [k]).

Proof. First assume i > j. By telescoping sum we have

fi − fj = fi − fi−1 + fi+1 − · · ·+ fj+1 − fj.

Grouping consecutive pairs and using Lemma 4.3.1, we get the average of fi − fj is

3(i− j)

k + 2
.

Now suppose j > i. A similar argument shows the average of fj − fi over an orbit is

3(j−i)
k+2

so

∑
I∈O

fi − fj = −

(∑
I∈O

fj − fi

)
= −

(
3(j − i)

k + 2

)
=

3(i− j)

k + 2
.



Chapter 5

Proper colorings of a graph

5.1 Path graph

The action of whirling can result in interesting actions in settings other than order-

reversing maps of posets. Let G = (V,E) be a finite graph with #V = n. A function

κ : V → [m] is called an m-coloring of G. The coloring is proper if κ(u) ̸= κ(v)

whenever (u, v) ∈ E. Let Fm(G) be set of all m-colorings of G and Km(G) be the

subset of all proper m-colorings of G. At the end of this section we will show a

connection to toggling independent sets of a graph Section 5.3.

Example 5.1.1. Recall that Pn is the path graph with vertex set [n] and edge set

{{i, i+1} : i ∈ [n−1]}. Here is a proper 4-coloring of P6, 2 1 2 4 2 1 ∈

K4(P6). To stay consistent with previous sections, we will use the compact notation

212421 ∈ K4(P6).

In this section for a graph G = (V,E) where #V = n, we denote the whirl on

68
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Km(G) by w = wnwn−1 . . . w1 whirling at each vertex from left to right along the

path.

Definition 5.1.2. Let G = (V,E) be a graph. We define for each v ∈ G the color-

characteristic function χv,i : Km(G)→ {0, 1} as follows:

χv,i(κ) =


1 if κ(v) = i, and

0 otherwise.

Example 5.1.3. Consider the proper coloring 1323121 ∈ K3(P7). Note that χ1,1 =

χ5,1 = χ7,1 = 1. Here is an orbit of whirling on K3(P7) containing 1323121.

1 3 2 3 1 2 1

2 1 2 3 1 3 2

3 1 2 3 2 1 3

2 3 1 3 2 1 2

1 2 1 3 2 3 1

3 2 1 3 1 2 3

This action generalizes toggling independent sets of a path graph where now our

graph is partitioned into independent sets, one for each color. When m = 3, get an

extension of Theorem 1.2.8.

Theorem 5.1.4. Fix any color j ∈ [3]. Set χi := χi,j. If w is whirling from left to

right, then under the action of w on K3(Pn),

1. χi − χn+1−i is 0-mesic, and

2. 2χ1 + χ2 is 1-mesic and χn−1 + 2χn is 1-mesic.
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Observe in Example 5.1.3 that the number of 1’s form the palindrome (2,2,3,0,3,2,2).

Also the 2’s form the palindrome (2,2,3,0,3,2,2), and the 3’s form the palindrome

(2,2,0,6,0,2,2).

Definition 5.1.5. Let κ ∈ Km(Pn). Define the difference vector of κ to be α =

(α1, α2, . . . , αn−1), where αi = κ(i)− κ(i+ 1) ∈ Z/mZ.

In the case where m = 3, the difference vector only takes two values, either +1 or

−1, which we represent by and respectively.

Example 5.1.6. The difference vector of 1323212 ∈ P7 is ( , , , , , ).

As one might expect, the difference vector is not unique to a coloring. However if

the color of any one vertex is known, the original coloring can be recovered uniquely.

Therefore, there are exactly m different colorings for each difference vector.

Lemma 5.1.7. Let κ ∈ K3(Pn) with difference vector α = (α1, α2, . . . , αn−1). Let

wi be the whirl at position i and α′ be the difference vector of wi(κ). We get the

following:

1. If i = 1, then α′ = (−α1, α2, . . . , αn). If i = n, then α′ = (α1, α2, . . . ,−αn).

2. If 1 < i < n, then α′ = (α1, . . . , αi−2, αi, αi−1, αi+1, . . . , αn) (the positions of

αi−1 and αi interchange.)

Proof. For (1), we will show what happens for κ(1) = 2. Since we are only whirling at

the first position, α(i) = α′(i) for 2 ≤ i < n, so we only need to check if α(1) = −α′(1).

There are two possibilities if κ(1) = 2:

1. If κ = 21 . . . , then α = ( , . . . ), w1(κ) = 31 . . . , and α′ = ( , . . . ).
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2. If κ = 23 . . . , then α = ( , . . . ), w1(κ) = 13 . . . , and α′ = ( , . . . ).

For (2), we will show what happens when κ(i) = 2 for 1 < i < n. We get the

following:

1. If κ = . . . 121 . . . , then α = (. . . , , , . . . ), wi(κ) = . . . 131 . . . ,

and α′ = (. . . , , , . . . ).

2. If κ = . . . 323 . . . , then α = (. . . , , , . . . ), wi(κ) = . . . 313 . . . ,

and α′ = (. . . , , , . . . ).

3. If κ = . . . 123 . . . , then α = (. . . , , , . . . ), wi(κ) = . . . 123 . . . ,

and α′ = (. . . , , , . . . ).

4. If κ = . . . 321 . . . , then α = (. . . , , , . . . ), wi(κ) = . . . 131 . . . ,

and α′ = (. . . , , , . . . ).

All other cases follow in a similar manner.

Example 5.1.8. In this example we will whirl in slow motion, taking note of the

effects of each wi on the difference vector. The red color will highlight the ←→

flips and the blue color will highlight the adjacent swaps. This will motivate the next
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proposition.

1 2 1 2 3 1

w1 3 2 1 2 3 1

w2 3 2 1 2 3 1

w3 3 2 3 2 3 1

w4 3 2 3 1 3 1

w5 3 2 3 1 2 1

w6 3 2 3 1 2 3

Proposition 5.1.9. Let κ ∈ K3(Pn), and let c be the leftward-cyclic shift map. If

α = (α1, α2, . . . , αn−1) is the difference vector of κ, then c(α) is the difference vector

of w(α). Furthermore, the order of c on α divides the order of w on κ.

Proof. As seen in part (2) of Lemma 5.1.7, the effect of wi where i is in the interior

of the path is interchanging values in the difference vector. Going from left to right

this effectively moves the first entry of the difference vector to the end. Combine this

with part (1) of Lemma 5.1.7, where the first entry (of the difference vector) has

and swapped, and the same for final entry

Example 5.1.10. Here is an orbit of proper-coloring whirling on K3(P4) containing
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1232. The corresponding difference vector to each proper coloring is to the right.

1 2 3 2

3 1 3 1

2 1 2 3

3 1 2 1

2 3 2 3

1 3 1 2

2 3 1 3

1 2 1 2

3 2 3 1

Notice that we ended up getting three orbits of c for one orbit of w. In fact, it turns

out this will happen whenever
∑n−1

i=1 αi does not divide 3.

Proposition 5.1.11. Let κ ∈ K3(Pn) with difference vector α. If
∑n−1

i=1 αi ≡ 0 (mod 3),

then the order of w on κ divides n− 1. If
∑n−1

i=1 αi ̸≡ 0 (mod 3), then the order of w

on κ divides 3(n− 1).

Proof. Assume
∑n−1

i=1 αi ≡ 0 (mod 3). If α1 = , then κ(2) = κ(1) + 1 (mod 3),

so it must be wκ(1) = κ(1) − 1 (mod 3). On the other hand, if α1 = , then

κ(2) = κ(1)− 1 (mod 3), so we know that wκ(1) = κ(1) + 1 (mod 3). In either case

we see wκ(1) = κ(1) − α1 (mod 3). Using Proposition 5.1.9 we can extend this to

wjκ(1) = κ(1)− (α1 + · · ·+ αj) (mod 3). Therefore,

wn−1κ(1) = κ(1)− (α1 + α2 + · · ·+ αn−1) (mod 3) = κ(1).

Since the order of c on α divides n− 1 and wk(κ)(1) = κ(1), we know wk(κ) = κ.
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From Proposition 5.1.9 we know n− 1 divides the order of w on κ, so the first result

is obtained.

Now assume
∑n−1

i=1 αi ̸≡ 0 (mod 3). Certainly w3(n−1)(κ) = κ from the arguments

above so the order of w on κ divides 3(n − 1) but does not divide (n − 1). We also

know (n− 1) divides the order of w on κ from Proposition 5.1.9, so the order of w on

κ is 3(n− 1).

Proof of Theorem 5.1.4. Fix κ ∈ K3(Pn) with difference vector α, and let k be the

order of c on α. If the order of w on κ is 3k, then the orbit contains the other two

proper colorings with difference vector α, therefore every color appears in each spot

exactly 1/3 of the time.

Now assume the order of w is k and fix some i ∈ [n]. We will show κ(i) =

wi−1κ(n+ 1− i). From the previous proof we know

wr−1κ(1) = κ(1)−
r−1∑
j=1

αj.

It follows that

wi−1κ(n+ 1− i) = κ(1)−
i−1∑
j=1

αj +
n−1∑
j=i

αj (mod 3).
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However by rearranging we obtain

i−1∑
j=1

−αj +
n−1∑
j=i

αj =
i−1∑
j=1

−αj +
i−1∑
j=1

−αj +
i−1∑
j=1

αj +
n−1∑
j=i

αj

= 2
i−1∑
j=1

−αj +
n−1∑
j=1

αj

Since
∑n−1

j=1 αj ≡ 0 (mod 3) and 2
∑i−1

j=1−αj ≡
∑i−1

j=1 αj (mod 3), we conclude that

wi−1(κ)(n+ 1− i) = κ(1) +
i−1∑
j=1

αj = κ(i).

Example 5.1.12. Consider the orbit containing 1323121 ∈ K3(P7). Using the

method from the proof of Theorem 5.1.4, we will match the 1 at κ(5) with a 1

at κ′(3) for some other proper coloring κ′ in the orbit. In this example i = 5 so the

matching 1 will be at wi−1κ(3) = w4κ(3) .

1 3 2 3 1 2 1

2 1 2 3 1 3 2

3 1 2 3 2 1 3

2 3 1 3 2 1 2

1 2 1 3 2 3 1

3 2 1 3 1 2 3
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1 2 3 4 5 6

Figure 5.1: C6

5.2 Cycle graph

We get related results for the cycle graph, Cn, where we connect the first and last

vertices of Pn. Taking a path graph and adding an edge between the first and last

vertex results in a cycle graph.

Definition 5.2.1. We define Cn to be the cycle graph with vertex set [n] and edge

set {{i, i+ 1} : i ∈ [n− 1]} ∪ {n, 1} as in Figure 5.1.

Theorem 5.2.2. Fix any color j ∈ [3]. Set χi := χi,j. If w = wn · · ·w2w1 (whirling

counterclockwise when the arc is drawn above), then under the action of w on K3(Cn),

1. The statistic χ3a+p − χ3b+p is 0-mesic for p ∈ [3] and 0 ≤ a, b ≤ n
3
− 1.

2. Furthermore, if 3 ̸ | n, then χi is 1/3-mesic.

Example 5.2.3. Here is the orbit of w containing 131232 ∈ K3(C6).

1 3 1 2 3 2

1 2 3 1 3 2

3 1 2 1 3 1

2 3 2 1 2 3

1 3 2 3 1 2
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Notice that the number of 1’s in the first column match the number of 1’s in the

fourth column in accordance with Theorem 5.2.2.

To prove this theorem we will once again use the difference vector which we define

slightly differently than for the path graph.

Definition 5.2.4. Let κ ∈ Km(Cn). Define the difference vector of κ to be

α = (α1, α2 . . . , αn−1, αn),

and where αi = κ(i)− κ(i+ 1) ∈ Z/mZ where κ(n+ 1) = κ(1).

Again since our goal is to prove a theorem where the number of colors is 3, our

difference vectors are composed of +1’s and −1’s, which we represent with and

respectively

Example 5.2.5. The proper 3-coloring 1323 ∈ K3(C4) has difference vector ( , , , ).

Lemma 5.2.6. If κ ∈ K3(Cn) and α is the difference vector of κ, then
∑n

i=1 αn =

0 (mod 3).

Proof. Since κ(j) = κ(1)+
∑j−1

i=1 αi (mod 3), we have κ(1)+
∑n

i=1 αi = κ(1) (mod 3).

Definition 5.2.7. We define skip-leftward cyclic shift, denoted by ĉ, as follows:

ĉ(α1, α2, . . . αn) = (α2, . . . , α1, αn).

Lemma 5.2.8. Let κ ∈ Km(Cn), where the indices now work mod n. If α is the

difference vector of κ and α′ is the difference vector of wκ, then α′ = ĉ(α).
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Proof. Let α be the difference vector of κ ∈ K3(Cn). Since every vertex is an interior

vertex, we know that whirling at i results in a swap between αi−1 and αi in α by

Lemma 5.1.7. When applying w, first positions n and 1 are swapped, then 1 and 2,

and so on until n − 1 and n swap. This last interchange returns αn to its original

location, leaving α1 in the penultimate position. Every other αi has shifted leftward

one spot.

Example 5.2.9. Let α be the difference vector of κ ∈ K3(C4) and α′ the difference

vector of wκ. If κ = 1323, then α = ( , , , ), wκ = 2121, and α′ = ĉ(α) =

( , , , ).

Using just these lemmas, we can prove the second statement of Theorem 5.2.2.

Proof of Theorem 5.2.2.2. Assume that 3 ̸ | n, κ ∈ K3(Cn) with difference vector α

and without loss of generality that κ(1) = 1 and αn = . By Lemma 5.2.8 we

know after n − 1 applications of w the difference vector will be α again. If we can

show wn−1(κ)(1) ̸= κ(1), then the orbit contains the other two proper colorings with

difference vector α, therefore every color appears in the each spot exactly 1/3 of the

time.

The color of the first vertex will only change when αn ̸= α1, which is when

α1 = . Therefore, the color in in the first position will increment by one for each

in the difference vector. Similarly if αn = , then the color of the first vertex will

decrement by one for each in the difference vector, which is the same as increasing

by the number of ’s since
∑n

i=1 αi = 0. So the proof is complete as long as the

number of ’s in the difference vector is not a multiple of 3. However, if the number

of ’s in the difference vector is a multiple of 3, then so is the number of ’s in the
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difference vector by Lemma 5.2.6. But n is the sum of the number of ’s and ’s in

the difference vector and that 3 ̸ | n.

To prove the first part of Theorem 5.2.2 we need the following lemma.

Lemma 5.2.10. If 0 ≤ a ≤ n
3
− 1 and p ∈ [3], then w3aκ(p) = κ(3a + p). In words,

the colorings in columns p and column 3a+ p are the same in an orbit board.

Proof. Let L = α1 + α2 + · · · + α3a and let P = α3a+1 + · · · + α3a+p−1. Without

loss of generality, we may assume αn = . We know from the definition of difference

vectors,

κ(3a+ 1) = κ(1) + L (mod 3) and κ(p+ 3a) = κ(1) + P + L (mod 3).

Let L = # ∈ {α1, α2, . . . , α3a}. Since L is the sum of 3a terms, we know L =

L (mod 3). It follows from the argument from the previous proof that w3aκ(1) =

κ(1) + L , or rather,

w3aκ(1) = κ(1) + L (mod 3).

Add P to both sides to get

w3aκ(1) + P = κ(p+ 3a) (mod 3).

Notice that adding P on the left-hand side is the same as moving p positions to

the right in the orbit board so we have,

w3aκ(p) = κ(p+ 3a) (mod 3).
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Example 5.2.11. Here is the orbit of w containing 131232 ∈ K3(C6). The difference

vector is ( , , , , , ).

1 3 1 2 3 2

1 2 3 1 3 2

3 1 2 1 3 1

2 3 2 1 2 3

1 3 2 3 1 2

The previous lemma outlines the following bijection between the circled 3’s in the

orbit board above. Let L = α1 + α2 + α3 and P = α4. Since αn = we have

w3κ(1) = κ(1)−L (mod 3) = 2. But since L is length 3, we know L = −L (mod 3),

so w3κ(1) = κ(4). Finally, add P to get w3κ(2) = κ(5).

Proof of Theorem 5.2.2.1. Lemma 5.2.10 gives us χi − χ3a+i is 0-mesic for all 0 ≤

a ≤ n
3
− 1 and i ∈ [3]. Through linear combinations we may obtain χ3a+i − χ3b+i is

0-mesic for any 0 ≤ a, b ≤ n
3
− 1 and i ∈ [3].

The reader should notice that nowhere did we use the fact that 3 | n.

5.3 Partial proper colorings

Definition 5.3.1. Similar to a (proper) coloring; we say a partial proper coloring of

a graph G = (V,E) is a map π : V → [0, n] such that if π(x) = π(y), then one of the

following must be true,

1. x = y,
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2. (x, y) ̸∈ E,

3. or π(x) = π(y) = 0.

The first two conditions are what give us proper colorings, the addition of the third

lets us have vertices labeled 0 be next to each other. We will call vertices labeled with

0 uncolored, with the remaining labels forming a proper coloring the other vertices.

Example 5.3.2. Here is a partial proper 2-coloring of G = [3]× [3]:

0

1

0 0

1

0

1

2

0

When π : V → [0, 1], a partial proper coloring is precisely an independent set of

G, so whirling on these generalizes toggling independent sets of G (cf. Section 1.2)

Definition 5.3.3. Define Rn = [2]× [n] to be the product of a path graph of length

2 and one of length n. The vertices of Rn are pairs (i, j) where i ∈ [2] and j ∈ [n].

Example 5.3.4. Here is R6 with the nodes labeled.

(2, 1)

(1, 1)

(2, 2)

(1, 2)

(2, 3)

(1, 3)

(2, 4)

(1, 4)

(2, 5)

(1, 5)

(2, 6)

(1, 6)
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Example 5.3.5. The orbits of I(R3) under φ = τ(2,n)τ(1,n) · · · τ(2,1)τ(1,1) where τv was

defined in Definition 1.2.3.

φ−→ φ−→ φ−→ φ−→ φ

φ−→ φ−→ φ−→ φ−→ φ

φ−→ φ

φ−→ φ

φ−→ φ−→ φ

Conjecture 5.3.6. Fix n ≥ 2 and let φ = τ(2,n)τ(1,n) · · · τ(2,1)τ(1,1) Coxeter toggling on

I(Rn), then
n−1∑
i=1

χ(1,i) −
n∑

i=2

χ(2,i)

is 0-mesic, that is, the total number of times (1, 1), . . . , (1, n− 2), (1, n− 1) appears

in a set S in an orbit of φ is the same as the number of times (2, 2), . . . , (2, n − 1),

(2, n) appears.

We can imagine putting two single row boxes that exclude opposite corners

1

2
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and counting the number of times a vertex is colored black across an orbit is in those

boxes. Here is an example on R3.

1

1
φ−→

0

1
φ−→

1

0
φ−→

0

1
φ−→

1

0
φ

0

0
φ−→

1

1
φ−→

0

1
φ−→

1

0
φ−→

1

1
φ

0

0
φ−→

1

1
φ

0

0
φ−→

1

1
φ

1

1
φ−→

1

0
φ−→

0

1
φ

Proposition 5.3.7. Fix n ≥ 2 and let φ = τ(2,n)τ(1,n) · · · τ(2,1)τ(1,1) toggling on I(Rn),

then

χ(1,1) + χ(2,1) − (χ(1,n) + χ(2,n))

is 0-mesic, that is, the number of times (1, 1) or (2, 1) appears in an independent set

S in an orbit of φ is the same as the number of times (1, n) or (2, n) appears in an

independent set S in an orbit of φ.

Again, we can imagine putting two single column boxes over the first and last
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column of Rn

0 1

and counting the number of times a vertex is in those boxes. Here is an example on

R3.

1 1

φ−→

0 0

φ−→

1 1

φ−→

1 1

φ−→

0 0

φ

0 0

φ−→

1 1

φ−→

0 1

φ−→

1 0

φ−→

1 1

φ

0 1

φ−→

1 0

φ

1 0

φ−→

0 1

φ

1 1

φ−→

1 0

φ−→

0 1

φ

Conjecture 5.3.8. For I(Rn) with n ≥ 2 given and let φ = τ(2,n)τ(1,n) · · · τ(2,1)τ(1,1),

then

χ(1,2) + χ(2,2) − (χ(1,n−1) + χ(2,n−1))

is 0-mesic, that is, the number of times (1, 2) or (2, 2) appears in an independent set

S in an orbit of φ is the same as the number of times (1, n− 1) or (2, n− 1) appears
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in an independent set S in an orbit of φ.

Again, we can imagine putting two single column boxes over the second and

penultimate column of Rn

1 1

and counting the number of times a vertex is in those boxes. Displaying a set of

pictures like this for R4 would take up more than a page in length. With more than

enough motivation, here we connect these independent sets of Rn to partial proper

colorings of Pn via an equivariant bijection that sends coxeter toggling to whirling.

Definition 5.3.9. Let Tk(Pn) be the set of function f : [n] → [0, k] such that when

written as a word, f is jj avoiding for all j ∈ [k].

There is a bijection between I(Rn) and T2(Pn) given by the following map. For

S ∈ I(Rn) we map the columns of Rn as follows:

→ 0, → 1, → 2

Example 5.3.10.

−→ 02121

Let Km be the complete graph with vertex set [m]. Define Qm×n = Km× [n], the

product of Km and a path graph of length n. Since K2 = [2], Q2×n = Rn. We define

φi = τ(m,i) · · · τ(1,i) on Qm×n and φ = φn · · ·φ1.
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Lemma 5.3.11. There is an equivariant bijection between I(Qm×n) and Tm(Pn) that

sends φ to w.

Proof. First we will consider the case where m = 2. The bijection is as written above

where the empty columns of Rn gets mapped to 0, a column with a vertex included in

the first row gets mapped to 1, and a column with a vertex included in the second row

gets mapped to 2. Let S ∈ I(Rn). Let v1 and v2 be two vertices in the i’th column.

Notice that toggling the first row in the i’th column and then the second row will

perform the following action in the i’th column: If v1 is in the set, then remove v1

and add v2 if possible, otherwise leave the column empty. If v2 is in the set, then

remove v2, leaving the column empty. If the column is empty, then add v1 if possible,

if not, then add v2 if possible, if not, leave the column empty. Via correspondence

this definition matches with whirling, wi.

The case where m > 2 is similar. Let m > 2 and S ∈ I(Qm×n). We will construct

π ∈ Tm(Pn) to establish a bijection between Qm×n and π ∈ Tm(Pn). The vertices

{(1, j), . . . , (m, j)} form a complete graph in Qm×n, call this set K
j
m. If K

j
m does not

intersect with S, then set π(j) = 0. Otherwise, there is at most one vertex (i, j) ∈ Kj
m

such that (i, j) ∈ S, so set π(j) = i. With this bijection we will now check that φ gets

sent to w. It suffices to show that φj is sent to wj. The action of φj toggles at each

vertex of Kj
m once from (1, j) to (m, j). The effect of this is that the lowest possible

i > j or i = 0 will be in φj(S). However, this is exactly the action of wj.

Example 5.3.12. Given 02121 ∈ T2(Pn) we see

02121
w−→ 10002.

We can now write orbits more compactly as orbit boards of partial proper color-
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ings. Here are the nine orbits of T2(P4).

1 2 1 2

0 0 0 0

2 1 2 1

0 0 0 2

1 2 1 0

0 0 2 1

1 0 0 2

2 1 0 0

0 2 1 2

1 0 0 0

0 1 2 1

2 0 0 2

0 1 0 0

2 0 1 2

0 2 0 0

1 0 1 2

2 0 0 0

0 0 1 2

1 2 0 0

1 2 0 1

0 0 2 0

1 0 0 1

2 1 2 0

0 0 0 1

1 2 0 2

0 0 1 0

2 0 2 1

0 1 0 2

2 0 1 0

0 2 0 1

1 0 2 0

2 1 0 1

0 2 0 2

1 0 1 0

1 0 2 1

2 1 0 2

0 2 1 0

0 1 0 1

2 0 2 0

2 0 0 1

0 1 2 0

Checking Proposition 5.3.7 can be reduced to counting the number of 0’s in a column.

We will now prove Proposition 5.3.7. We will do so by drawing a connecting

sequence of 0’s between individual 0’s in the left column of the orbit board and 0’s of

the right column of the orbit board. Here is an example from above with the zeroes
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highlighted.

2 0 2 1

0 1 0 2

2 0 1 0

0 2 0 1

1 0 2 0

2 1 0 1

0 2 0 2

1 0 1 0

The following lemma describes how these connected zero strings appear in an orbit

board of w.

Lemma 5.3.13. Let B be an orbit board where B(i, j) is the jth element in the ith

row of an orbit.

1. If B(i, 0) = 0, then B(i + 1, 0) ̸= 0. (A 0 in the first position is never above

another 0.)

2. If B(i, n) = 0, then B(i + 1, n) ̸= 0. (A 0 in the last position is never above

another 0.)

3. If B(i, j) = B(i, j + 1) = 0, then B(i + 1, j) ̸= 0. (If a zero is to the left of a

zero, then there is not a zero below it.)

4. If B(i, j) = B(i+1, j) = 0, then B(i+2, j) ̸= 0. (Three zeros do not appear on

top of each other.)

5. If B(i, j) = 0, B(i+ 1, j) ̸= 0, and B(i, j + 1) ̸= 0, then B(i+ 1, j + 1) = 0. (If

a zero is not bordered by a zero, then there is one diagonally down right.)
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Proof. For (1), (2), and (3), the only way we can whirl at 0 and get a 0 is if the

0 is surrounded by a 1 and a 2, since edge positions only have one neighbor this is

impossible.

For (4), a zero can only be above another zero if its neighbors are 1 and 2, which

means the zero below it will have a zero neighbor. Similarly, if a zero has a nonzero

neighbor, then it cannot be above a zero. Thus three zeros cannot be on top of each

other.

For (5), Suppose a 2 is right of the 0, then directly below the 2 must be 0. If a 1

is to the right of the 0, then what is below the 0 must be a 2 since toggling at the 0

cannot result in a 1, thus whirling at the 1 results in 0.

From this proposition we know that these zero strings do not split or combine and

thus there is a bijection between the zeros on the left and of the board and the zeros

on the right of the board. Thus proving Proposition 5.3.7.

Proof of Proposition 5.3.7. Using Lemma 5.3.13, since each zero string has one zero

in the first column of B and one zero in the last position B this proves the number

of zeros in the first an last columns are the same for each orbit. Since the number of

zeros in the first and last column are the same, so are the number of 1’s and 2’s in

which the homomesy follows.

For Conjecture 5.3.8 we cannot do something similar because in middle columns of

an orbit board, two 0’s can appear one directly above another. as in the last example.

Instead we will need a different way to relate the 2nd and penultimate column.
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[8] C. Defant, S. Hopkins, S. Poznanović, and J. Propp, Homomesy via toggleability

statistics, (2021), arXiv:2108.13227.

90

https://arxiv.org/abs/2205.04938
https://arxiv.org/abs/2108.13227


91

[9] P. Duchet, Sur les hypergraphes invariants, Discret. Math. 8 (1974), 269–280.

[10] D. Einstein, M. Farber, E. Gunawan, M. Joseph, M. Macauley, J. Propp, and

S. Rubinstein-Salzedo, Noncrossing partitions, toggles, and homomesies, Elec-

tron. J. Combin. 23 (2016), no. 3.

[11] D. Einstein and J. Propp, Combinatorial, piecewise-linear, and birational homo-

mesy for products of two chains, Algebr. Comb. 4 (2021), no. 2, 201–224. MR

4244370

[12] J. Elder, N. Lafrenière, E. McNicholas, J. Striker, and A. Welch, Homomesies on

permutations – an analysis of maps and statistics in the findstat database, 2022,

arXiv:2206.13409.

[13] S. Elizalde, M. Plante, T. Roby, and B. Sagan, Rowmotion on fences, Algebraic

Combin. (2022), to appear, arXiv:2108.12443.

[14] S. Elizalde and B. Sagan, Partial rank symmetry of distributive lattices for fences,

2022, arXiv:2201.03044.

[15] H. Eriksson and K. Eriksson, Conjugacy of Coxeter elements, Electron. J. Com-

bin. (2009).

[16] E. R. Gansner, On the lattice of order ideals of an up-down poset, Discrete Math.

39 (1982), no. 2, 113–122. MR 675856

[17] E. Hanaoka and T. Sadahiro, Generalized bitstring rotation and its applications

to toggle dynamical systems, Theor. Comput. Sci. 910 (2022), 14–33.

[18] M. Joseph, J. Propp, and T. Roby, Whirling injections, surjections, and other

functions between finite sets, 2018, arXiv:1711.02411.

https://arxiv.org/abs/2206.13409
https://arxiv.org/abs/2201.03044
https://arxiv.org/abs/1711.02411


92

[19] M. Joseph and T. Roby, Toggling independent sets of a path graph, Electron. J.

Comb. 25 (2018), P1.18.

[20] M. Joseph and T. Roby, Birational and noncommutative lifts of antichain toggling

and rowmotion, Algebraic Combinatorics 3 (2020), no. 4, 955–984 (en).

[21] T. McConville, B. Sagan, and C. Smyth, On a rank-unimodality conjecture of

Morier-Genoud and Ovsienko, Discrete Math. 344 (2021), no. 8, 112483, 13. MR

4266256

[22] S. Morier-Genoud and V. Ovsienko, q-deformed rationals and q-continued frac-

tions, Forum Math. Sigma 8 (2020), Paper No. e13, 55. MR 4073883

[23] E. Munarini and N. Zagaglia Salvi, On the rank polynomial of the lattice of order

ideals of fences and crowns, Discrete Math. 259 (2002), no. 1-3, 163–177. MR

1948779

[24] G. Musiker, R. Schiffler, and L. Williams, Positivity for cluster algebras from

surfaces, Adv. Math. 227 (2011), no. 6, 2241–2308. MR 2807089
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