Rowmotion on the chain of V's poset, whirling dynamics and the flux-capacitor homomesy

Matthew Plante (Joint work with Tom Roby) Slides available at www.matthewplante.com

April 6th, 2025

Whirling and rowmotion

2 Rowmotion on the chain of V's poset

Solution on the chain of claws poset

Definition of whirling on posets

Let \mathcal{F}_k be the set of *order-reversing function* from P to $\{0, 1, \ldots, k\}$. Also referred to as *P*-partitions.

Definition of whirling on posets

Let \mathcal{F}_k be the set of *order-reversing function* from P to $\{0, 1, \ldots, k\}$. Also referred to as *P*-partitions.

Definition

Let *P* be a poset. For $f \in \mathcal{F}_k(P)$ and $x \in P$ define $w_x : \mathcal{F}_k(P) \to \mathcal{F}_k(P)$, called the *whirl at x*, as follows: repeatedly add 1 (mod k + 1) to the value of f(x) until we get a function in $\mathcal{F}_k(P)$. This new function is $w_x(f)$.

Definition of whirling on posets

Let \mathcal{F}_k be the set of *order-reversing function* from P to $\{0, 1, \ldots, k\}$. Also referred to as *P*-partitions.

Definition

Let *P* be a poset. For $f \in \mathcal{F}_k(P)$ and $x \in P$ define $w_x : \mathcal{F}_k(P) \to \mathcal{F}_k(P)$, called the *whirl at x*, as follows: repeatedly add 1 (mod k + 1) to the value of f(x) until we get a function in $\mathcal{F}_k(P)$. This new function is $w_x(f)$.

Whirling

Proposition

If $x, y \in P$ are incomparable, then $w_x w_y(f) = w_y w_x(f)$.

Whirling

Proposition

If $x, y \in P$ are incomparable, then $w_x w_y(f) = w_y w_x(f)$.

Since x and y are incomparable, there are no inequalities constraining the relationship between f(x) and f(y). So $w_x w_y = w_y w_x$.

Whirling

Proposition

If $x, y \in P$ are incomparable, then $w_x w_y(f) = w_y w_x(f)$.

Since x and y are incomparable, there are no inequalities constraining the relationship between f(x) and f(y). So $w_x w_y = w_y w_x$.

Definition

Let (x_1, x_2, \ldots, x_p) be a linear extension of P. Define $w : \mathcal{F}_k(P) \to \mathcal{F}_k(P)$ by $w := w_{x_1} w_{x_2} \ldots w_{x_p}$.

Proposition

If $x, y \in P$ are incomparable, then $w_x w_y(f) = w_y w_x(f)$.

Since x and y are incomparable, there are no inequalities constraining the relationship between f(x) and f(y). So $w_x w_y = w_y w_x$.

Definition

Let (x_1, x_2, \ldots, x_p) be a linear extension of P. Define $w : \mathcal{F}_k(P) \to \mathcal{F}_k(P)$ by $w := w_{x_1} w_{x_2} \ldots w_{x_p}$.

The above proposition shows that this is well-defined, since one can get from any linear extension to any other by a sequence of interchanges of incomparable elements.

Example of whirling V

We whirl the example $\ell \leq r$ first at ℓ , r, then c. Start with $(0,2,2) \in \mathcal{F}_2(V)$.

Example of whirling V

We whirl the example $\ell \leq r$ first at ℓ , r, then c. Start with $(0,2,2) \in \mathcal{F}_2(V)$.

Example of whirling V

We whirl the example $\ell \leq r$ first at ℓ , r, then c. Start with $(0,2,2) \in \mathcal{F}_2(V)$.

Order ideals

• Let $\mathcal{J}(P)$ denote the set of order ideals of a poset P. That is, for $I \subseteq V(n)$, $I \in \mathcal{J}_n$ if and only if $x \in I \Longrightarrow y \in I$ for all $y \leq x$.

Order Ideal

Order Filter

Antichain

 Denote *rowmotion* on order ideals by ρ. We define ρ on order ideals by taking the minimal elements of the complement and saturating down.

Rowmotion on order ideals

 Denote rowmotion on order ideals by ρ. We define ρ on order ideals by taking the minimal elements of the complement and saturating down.

Rowmotion on order ideals

 Denote rowmotion on order ideals by ρ. We define ρ on order ideals by taking the minimal elements of the complement and saturating down.

This map and its inverse have been considered with varying degrees of generality by many people: Duchet, Brouwer and Schrijver, Vameron and Fon Der Flaass, Fukuda, Panyushev, Rush and Shi, and Striker and Williams, who named it rowmotion.

• Rowmotion has an alternate definition as a composition of toggling involutions by Cameron and Fon-der-Flaass [CaFI95]

$$\tau_i(I) = \begin{cases} I \smallsetminus \{i\} & \text{if } i \in I \text{ and } I \smallsetminus \{i\} \in \mathcal{J}(P) \\ I \cup \{i\} & \text{if } i \notin I \text{ and } I \cup \{i\} \in \mathcal{J}(P) \\ I & \text{otherwise.} \end{cases}$$

• Rowmotion has an alternate definition as a composition of toggling involutions by Cameron and Fon-der-Flaass [CaFI95]

$$\tau_i(I) = \begin{cases} I \smallsetminus \{i\} & \text{if } i \in I \text{ and } I \smallsetminus \{i\} \in \mathcal{J}(P) \\ I \cup \{i\} & \text{if } i \notin I \text{ and } I \cup \{i\} \in \mathcal{J}(P) \\ I & \text{otherwise.} \end{cases}$$

4

• Rowmotion has an alternate definition as a composition of toggling involutions by Cameron and Fon-der-Flaass [CaFI95]

$$\tau_{i}(I) = \begin{cases} I \smallsetminus \{i\} & \text{if } i \in I \text{ and } I \smallsetminus \{i\} \in \mathcal{J}(P) \\ I \cup \{i\} & \text{if } i \notin I \text{ and } I \cup \{i\} \in \mathcal{J}(P) \\ I & \text{otherwise.} \end{cases} \xrightarrow{T_{1}} 2$$

л

• Rowmotion has an alternate definition as a composition of toggling involutions by Cameron and Fon-der-Flaass [CaFI95]

$$\tau_{i}(l) = \begin{cases} l \setminus \{i\} & \text{if } i \in l \text{ and } l \setminus \{i\} \in \mathcal{J}(P) \\ l \cup \{i\} & \text{if } i \notin l \text{ and } l \cup \{i\} \in \mathcal{J}(P) \\ l & \text{otherwise.} \end{cases} \xrightarrow{\tau_{1}} 2$$

$$T_{1} \xrightarrow{\tau_{4}} \xrightarrow{\tau_{3}} \xrightarrow{\tau_{3}} \xrightarrow{\tau_{2}} \xrightarrow{\tau_{2}} \xrightarrow{\tau_{1}} \xrightarrow{\tau_{1}} \xrightarrow{\tau_{1}} \xrightarrow{\tau_{2}} \xrightarrow{\tau_{1}} \xrightarrow{\tau_{1}} \xrightarrow{\tau_{2}} \xrightarrow{\tau_{1}} \xrightarrow{\tau_{2}} \xrightarrow{\tau_{1}} \xrightarrow{\tau_{1}} \xrightarrow{\tau_{2}} \xrightarrow{\tau_{2}} \xrightarrow{\tau_{1}} \xrightarrow{\tau_{2}} \xrightarrow{\tau_{2}} \xrightarrow{\tau_{1}} \xrightarrow{\tau_{2}} \xrightarrow{\tau_{2}$$

Λ

Definition

A chain-factor poset is a poset P such that $P = Q \times [n]$ for some poset Q.

Equivariant bijection between whirling and rowmotion

Theorem

There is an equivariant bijection between $\mathcal{F}_k(P)$ and $\mathcal{J}(P \times [k])$ (order ideals of chain-factor posets) which sends w to ρ .

Whorms

Definition

For any $x \in P$ and $f \in \mathcal{F}_k(P)$, define (x, f) to be a *whirl element*. The whirl element (y, g) is *whirl successive* to (x, f) if either:

9
$$y = x$$
 and $g(y) = w(f)(x) = f(x) + 1$, or

2 x covers y,
$$f = g$$
, and $f(x) = g(y)$.

Two elements in a sequence of whirl successive elements are called *whorm-connected*. A *whorm* is a maximal set of whirl successive elements.

An orbit of whirling $\mathcal{F}_2(P)$ (for $P = [2] \times [2]$) with its four whorms indicated by the same color and (redundantly) node-shape.

Definition (Propp-Roby [PR15, Def. 1.1])

Let the invertible action τ act on the set S. Let f be the statistic $f: S \to K$. Assume every τ -orbit is finite. We say f is *homomesic* if there exists $c \in K$ such that

$$\frac{\sum_{s\in O} f(s)}{\#O} = c$$

for all orbits O. In such a case we say the triple (S, τ, f) exhibit *homomesy* with average c.

Definition (Propp-Roby [PR15, Def. 1.1])

Let the invertible action τ act on the set S. Let f be the statistic $f: S \to K$. Assume every τ -orbit is finite. We say f is *homomesic* if there exists $c \in K$ such that

$$\frac{\sum_{s\in O} f(s)}{\#O} = c$$

for all orbits O. In such a case we say the triple (S, τ, f) exhibit *homomesy* with average c.

• If S is finite, then we can switch out c from the equation above with the global average.

$$\frac{\sum_{s\in O} f(s)}{\#O} = \frac{\sum_{s\in S} f(s)}{\#S}$$

• If (S, τ, f) exhibit homomesy with average c we say f is c-mesic.

Homomesy of product of two chains

Let χ_p be the indicator function of p in order ideal I. Consider the statistic $\sum_{p \in P} \chi_p$.

Homomesy of product of two chains

Let χ_p be the indicator function of p in order ideal I. Consider the statistic $\sum_{p \in P} \chi_p$.

Theorem (Propp-Roby [PR15])

The action of rowmotion on $\mathcal{J}([a] \times [b])$ with cardinality statistic is ab/2-mesic.

Rowmotion on the chain of V's poset

The poset $V \times [k]$

• Let V be the three-element partially ordered set with Hasse diagram

The poset $\mathsf{V} imes [k]$

• Let V be the three-element partially ordered set with Hasse diagram

• The poset of interest is $V \times [k]$

Order-ideal rowmotion on $V \times [k]$

Order-ideal rowmotion on $V \times [k]$

Theorem

Order ideals of V × [k] are reflected about the center chain after k + 2 iterations of ρ , and furthermore, the order of ρ on order ideals of V × [k] is 2(k + 2).

Map to order-reversing functions on V

Obefine *F_k*(V) = {(*ℓ*, *c*, *r*) ∈ {0,..., *k*}³ : *ℓ*, *r* ≤ *c*}.
Obefine φ : *J*(V × [*k*]) → *F_k*(V) by φ(*I*) = (∑ χ_{ℓ_i}, ∑ χ_{c_i}, ∑ χ_{r_i}).

$$\phi \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} = (0, 3, 3) \leftrightarrow {}^{3}$$

Example of rowmotion orbit with triples

Theorem

Order ideals of V × [k] are reflected about the center chain after k + 2 iterations of ρ , and furthermore, the order of ρ on order ideals of V × [k] is 2(k + 2).

Direct inspection of order-reversing functions on V gives a straightforward proof of periodicity. However a study of *whorms* gives a deeper understanding of the orbit structure.

1	2	2
2	3	0
3	4	1
4	4	2
0	3	3
1	4	0
2	2	1
0	3	2
1	4	3
2	4	4
3	3	0
0	4	1

0	2	0	
1	3	1	
2	4	2	
3	3	3	
0	4	0	
1	1	1	

Tiling an orbit board with whorms

Definition

For any $x \in P$ and $f \in \mathcal{F}_k(P)$, define (x, f) to be a *whirl element*. The whirl element (y,g) is *whirl successive* to (x, f) if either:

•
$$y = x$$
 and $g(y) = w(f)(x) = f(x) + 1$,
or

3 x covers y,
$$f = g$$
, and $f(x) = g(y)$.

Two elements in a sequence of whirl successive elements are called *whorm-connected*. A *whorm* is a maximal set of whirl successive elements.

The red whorm is a *left whorm* and a *one-tailed whorm*, the green whorm is a *right whorm* and one-tailed whorm, and the blue whorm is a *two-tailed whorm*. For a whorm ξ , let $h(\xi)$ be the number of rows intersecting the center column, and let $t(\xi)$ be the number of rows intersecting the outer columns.

Center-seeking whorms

Theorem

Any orbit board of $\mathcal{F}_k(V)$ can be decomposed into 6 one-tailed whorms of length k + 2 (or 2 two-tailed whorms if the functions are symmetric.) We call these whorms, center-seeking whorms.

1	2	2			
2	3	0			
3	4	1			
4	4	2	0	2	0
0	3	3	1	3	1
1	4	0	2	4	2
2	2	1	3	3	3
0	3	2	0	4	0
1	4	3	1	1	1
2	4	4			
3	3	0			
0	4	1			

Center-seeking whorms

Theorem

Any orbit board of $\mathcal{F}_k(V)$ can be decomposed into 6 one-tailed whorms of length k + 2 (or 2 two-tailed whorms if the functions are symmetric.) We call these whorms, center-seeking whorms.

Using the lemma

Given a whorm ξ in an orbit board of $\mathcal{F}_k(V)$, it can reasoned h(ξ) + t(ξ) = k + 2. We will place a circular order on the whorms. Let ξ_1 and ξ_2 be whorms in an orbit board of $\mathcal{F}_k(V)$. If there exists $(c, f) \in \xi_1$ with f(c) = k such that $(c, w(f)) \in \xi_2$, then we say ξ_2 is *in front of* ξ_1 . We call a sequence of whorms *consecutive* if each is in front of the next.

Lemma

Given an orbit board \mathcal{R} of w on $\mathcal{F}_k(V)$, let ξ_1, ξ_2 , and ξ_3 be three consecutive whorms (not necessarily all distinct), that is, ξ_3 is in front of ξ_2 which is in front of ξ_1 in \mathcal{R} .

If R is tiled entirely by one-tailed whorms, then

 $t(\xi_1) + t(\xi_2) + t(\xi_3) = 2(k+2).$

Otherwise, if R is tiled entirely by two-tailed whorms, then
 t(ξ₁) + t(ξ₂) = k + 2.

Using the lemma 2

Given a whorm ξ in an orbit board of $\mathcal{F}_k(V)$, it can reasoned h(ξ) + t(ξ) = k + 2. We will place a circular order on the whorms. Let ξ_1 and ξ_2 be whorms in an orbit board of $\mathcal{F}_k(V)$. If there exists $(c, f) \in \xi_1$ with f(c) = k such that $(c, w(f)) \in \xi_2$, then we say ξ_2 is *in front of* ξ_1 . We call a sequence of whorms *consecutive* if each is in front of the next.

Lemma

Given an orbit board with one-tailed whorms, let ξ_1 , ξ_2 , ξ_3 , and ξ_4 be consecutive, then

$$\mathsf{t}(\xi_4)=\mathsf{t}(\xi_1).$$

Otherwise, if the orbit board contains two-tailed whorms, then $t(\xi_1) = t(\xi_3)$.

Theorem

Let
$$(x, y, z) \in \mathcal{F}_k(\mathsf{V})$$
, then $w^{k+2}(x, y, z) = (z, y, x)$.

1	2	2	
2	3	0	
3	4	1	
4	4	2	
0	3	3	
1	4	0	
2	2	1	
0	3	2	
1	4	3	
2	4	4	
3	3	0	
		-	

Theorem

For the action of rowmotion on order ideals of $V \times [k]$:

The statistic
$$\chi_{r_i} - \chi_{\ell_i}$$
 is 0-mesic -1 for each $i = 1, ..., k$,

where χ_p is the indicator function.

3 The statistic
$$\chi_{\ell_1} + \chi_{r_1} - \chi_{c_k}$$
 is $\frac{2(k-1)}{k+2}$ -mesic.

Sketch of proof of homomesy

$$\sum \chi_{\ell_1} + \chi_{r_1} - \chi_{c_k}$$

$$=(2(k+2)-3)+(2(k+2)-3)-6$$

Thus we see

$$\frac{4(k+2)-12}{2(k+2)}=\frac{2k-2}{k+2}.$$

$$2(k+2)$$
 rows

Flux capacitor

Let $F_i = \chi_{\ell_i} + \chi_{r_i} + \chi_{c_{i-1}}$, which has the following *flux-capacitor* shape in $V \times [k]$.

:

Flux capacitor

Let $F_i = \chi_{\ell_i} + \chi_{r_i} + \chi_{c_{i-1}}$, which has the following *flux-capacitor* shape in $V \times [k]$.

:

The flux capacitor homomesy

Let $F_i = \chi_{\ell_i} + \chi_{r_i} + \chi_{c_{i-1}}$, which has the following *flux-capacitor* shape in $V \times [k]$.

Theorem

For k > 1. The difference of **symmetrically-placed** flux-capacitor statistics, $F_i - F_{k+2-i}$, is $\frac{3(k+2-2i)}{k+2}$ -mesic.

Rowmotion on the chain of claw's poset

Claw poset

Definition

We define the *claw poset* $C_n = \{b_1, \dots, b_n, \hat{0}\}$ where each b_i covers $\hat{0}$. The *chain of claws poset* is defined to be $C_n \times [k]$.

For example, the Hasse diagram of C_5 would be

Orbit of whirling $\mathcal{F}_3(C_5)$ with whorms high-lighted.

Definition

For any $A \subseteq [0, k]$, define the family of order-reversing maps

$$\mathcal{F}_k^A(\mathsf{C}_n) = \{f : f \in \mathcal{F}_k(\mathsf{C}_n) \text{ and } f(b_j) \in A \text{ for all } j \in [n]\}.$$

Then set $\overline{w}_A := \mathcal{F}_k^A(C_n)$ to be the map which whirls (cyclically increments within the subset A) each label on the non- $\widehat{0}$ elements of C_n .

Consider
$$f = (1, 3, 3, 0, 4, 1, 6) \in \mathcal{F}_9(C_6)$$
. We see $A(f) = \{0, 1, 3, 4\}$ so

$$\overline{w}_{A(f)}(1,3,3,0,4,1,6) = (3,4,4,1,0,3,6).$$

The last entry remains unchanged, and the earlier entries are increasing cyclically within the set $A(f) = \{0, 1, 3, 4\}$, with $\alpha := \#A = 4$.

Order of rowmotion on chain of claws

Theorem

Let w be the whirling action on k-bounded P-partitions in $\mathcal{F}_k(C_n)$. For any $f \in \mathcal{F}_k(C_n)$ with A = A(f) and $\alpha = \alpha(f) = \#A(f)$, we have $w^{k+2}f = \overline{w}_{A(f)}f$. Thus, $w^{\alpha(k+2)}f = f$.

Similar to the $V \times [k]$ case, this theorem is proved using whorms.

Theorem

Let $m = \min(k + 1, n)$. The order of rowmotion on the chain of claws poset $\mathcal{J}(C_n \times [k])$ is $(k+2)\operatorname{lcm}(1, 2, ..., m)$.

Theorem

Let $\chi_{(i,a)}$ denote the indicator function for $(b_i, a) \in C_n \times [k]$. Then for the action of rowmotion on $\mathcal{J}(C_n \times [k])$, the statistic $\chi_{(i,a)} - \chi_{(j,a)}$ is 0-mesic for all $i, j \in [n]$ and $a \in [k]$.

The "flux-capacitor" homomesy fails to generalize to the claw-graph setting.

Future projects include whirling investigations of

- chains of minuscule posets,
- 2 chains of fence posets,
- On the second second
- oproduct of three-chains.

Thank You!

[CaFI95] Peter J. Cameron and Dmitry G. Fon-der-Flaass, Orbits of Antichains Revisited, Europ. J. of Combin., 16(6), (1995), 545-554, http: //www.sciencedirect.com/science/article/pii/0195669895900365.

[SW11] Jessica Striker and Nathan Williams, *Promotion and Rowmotion*, Europ. J. of Combin. 33 (2012), 1919–1942,

[PR15] James Propp and Tom Roby, Homomesy in products of two chains, Electronic J. Combin. 22(3) (2015), #P3.4, http://www. combinatorics.org/ojs/index.php/eljc/article/view/v22i3p4.

[R16] Tom Roby, Dynamical algebraic combinatorics and the homomesy phenomenon in A. Beveridge, et. al., Recent Trends in Combinatorics, IMA Volumes in Math. and its Appl., **159** (2016), 619–652.

[JR18] Michael Joseph and Tom Roby, *Toggling Independent Sets of a Path Graph*, Electronic Journal of Combin., **25(1)**, 2018, #P1.18.

[JPR18] Michael Joseph and James Propp and Tom Roby, Whirling injections, surjections, and other functions between finite sets, 2018. https://arxiv.org/abs/1711.02411

[EPRS] Sergi Elizalde and Matthew Plante and Tom Roby and Bruce Sagan, *Rowmotion on fences*, arXiv:2108.12443.