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Binary Strings and an Example of Homomesy
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Binary Strings

Let Sn,k be the set of strings of 0s and 1s with length n and exactly k
1s.
Let τ be rightward cyclic shift that bumps each entry to the right and
the last entry to the front

Example (S7,3)

τ(0110101) = 1011010

τ is periodic (order divides n)
τ is invertible ( τ−1 =leftward cyclic shift)
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τ -Orbits
Since τ is periodic and invertible every element of Sn,k belongs to a
unique τ -orbit.
We can naturally partition Sn,k into τ -orbit boards. Where below
each string is τ applied to that string.

Example (The four τ -orbit boards of S6,3)
000111 001101 001011 010101
100011 100110 100101 101010
110001 010011 110010
111000 101001 011001
011100 110100 101100
001110 011010 010110

These boards are infinite but we will write just one period. We
sometimes call a board with more than one period a superorbit
board.
When there is no ambiguity we just call them orbit boards.
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Inversions

An inversion in a binary string s is a pair (i , j) with i < j and si > sj .
In this case, si = 1 but sj = 0.

Let f : Sn,k → Q be the number of inversions in any string in Sn,k

Example (S7,3)

f (0110010) = 0 + 2 + 2 + 3 = 7
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Same Average

If we count calculate f for each string in Sn,k we notice a surprising
phenomenon.

Example (The four τ -orbit boards of S6,3 with number of inversions)
000111 0 001101 2 001011 1 010101 3
100011 3 100110 5 100101 4 101010 6
110001 6 010011 2 110010 7
111000 9 101001 5 011001 4
011100 6 110100 8 101100 7
001110 3 011010 5 010110 4

If we calculate the average number of inversions per orbit board we
get: 0+3+6+9+6+3

6 = 2+5+2+5+8+5
6 = 1+4+7+4+7+4

6 = 3+6
2 = 4.5

Same average!
The set Sn,k under the τ -orbit with statistic f is a homomesy, and
we say f is 4.5-mesic.
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Defining Homomesy

Let
S be a set,
τ : S → S be an invertible map,
K be a field of characteristic 0.

Definition
A τ -orbit is an equivalence class on S under the relation ∼, where s ∼ t
provided s = τ jt for some j ∈ N.

Definition
A statistic is any map f : S → K .
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Defining Homomesy Cont.

Definition ([PR15, Def. 1.1])
Assume every τ -orbit is finite. We say f is homomesic if there exists c ∈ K
such that ∑

s∈O f (s)
#O = c

for all orbits O. In such a case we say the triple (S, τ, f ) exhibit homomesy
with average c.

If S is finite then we can switch out c from the equation above with
the global average. ∑

s∈O f (s)
#O =

∑
s∈S f (s)
#S .
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Example: Binary Strings Cont.

Let
S = Sn,k

τ is rightward cyclic shift
f (s) = # of inversions.

Theorem ([PR15, Thm. 2.3])
The triple (Sn,k , τ, f ) exhibit homomesy with average k(n − k)/2.

Our first example was the inversion statistic on rightward cyclic
rotation of binary strings for n = 6 and k = 3.
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Example: Binary Strings Cont.

Another statistic, take χj , to be the jth 1 indicator function so

χ3(111000) = 1, χ3(100110) = 0

Example (The four τ -orbit boards of S6,3 with χ3)
000111 0 001101 1 001011 1 010101 0
100011 0 100110 0 100101 0 101010 1
110001 0 010011 0 110010 0
111000 1 101001 1 011001 1
011100 1 110100 0 101100 1
001110 1 011010 1 010110 0

So (S6,3, τ, χ3) is .5-mesic.
In general (Sn,k , τ, χj) is k/n-mesic.
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Toggling Independent Sets on a Graph
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Graph Notation
Let G = (V ,E ) be an undirected graph with no loops.

V is the vertex set.
E is the edge set, a set of pairs {u, v} where u, v ∈ V . For simplicity
we’ll write uv ∈ E when convenient instead of {u, v} ∈ E .

Example (A Graph with 6 vertices)

 
a

 
b

 
c

 
d

 
e

 
f

I V = {a, b, c, d , e, f }
I E = {ac, ad , bd , cd , ce, ef }

If {u, v} ∈ E then u and v are adjacent. Specifically we can say u is
adjacent to v and v is adjacent to u. Also say u and v are neighbors.
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Independent Sets of a Graph

We say a set S ⊂ V is independent if uv 6∈ E for all distinct pairs
u, v ∈ S.

Example

#
a

#
b

 
c

#
d

#
e

 
f

We shade vertices  to indicates the vertex is in S and # to indicates
the vertex is not in S.
This set, S = {c, f }, is independent.
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Why No Loops

If a graph G has a loop at vertex v then v can never be in an
independent set since v is adjacent to itself.
As sets, I(G) would be the same as I(G r v) so we will assume our
graphs do not have loops.

Example

G =
 
a

 
b

 
c

 
d

 
e

 
f G r c =

 
a

 
b

 
d

 
e

 
f

I(G) = I(G r c) ={{a}, {b}, {d}, {e}, {f }, {a, b}, {a, e}, {a, f },
{a, b, e}, {a, b, f }, {b, e}, {b, f }, {d , e}, {d , f }}
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Toggling on Independent Sets

Let I(G) denote the set of all independent set of the graph G .
Let G = (V ,E ) and S ∈ I(G).
For all v ∈ V , let τv (S) : I(G)→ I(G) denote the following map

τv (S) =


S r (v) if v ∈ S,
S ∪ v if v 6∈ S and S ∪ v ∈ I(G),
S otherwise.

we call τv the toggle at v .
Notice that τ2

v (S) = S for all S ∈ I(G) and therefore τv is an
involution.

Theorem (Generalization of [JR18, Thm. 2.2])
For graph G = (V ,E ), two toggles τv and τu commute if and only if
uv 6∈ E.
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Toggling cont.

τv (S) =


S r (v) if v ∈ S,
S ∪ v if v 6∈ S and S ∪ v ∈ I(G),
S otherwise.

Example (τb({c , f }))

τb


#
a

#
b

 
c

#
d

#
e

 
f


=

#
a

 
b

 
c

#
d

#
e

 
f
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Toggling cont.

τv (S) =


S r (v) if v ∈ S,
S ∪ v if v 6∈ S and S ∪ v ∈ I(G),
S otherwise.

Example (τa({c , f }))

τa


#
a

#
b

 
c

#
d

#
e

 
f


=

#
a

#
b

 
c

#
d

#
e

 
f
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Toggling cont.

τv (S) =


S r (v) if v ∈ S,
S ∪ v if v 6∈ S and S ∪ v ∈ I(G),
S otherwise.

Example (τf ({c , f }))

τf


#
a

#
b

 
c

#
d

#
e

 
f


=

#
a

#
b

 
c

#
d

#
e

#
f
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Leaves

A leaf is a vertex which is only adjacent to exactly one vertex.

Example (A graph with one leaf.)

#
c

#
a

#
d

#b

The vertex a is a leaf.

Every leaf has exactly one neighbor so the result of toggling at a leaf
depends entirely on whether or not either of these vertices are in the
set.
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General Toggling Result
Theorem (Generalization of [JR18, Thm. 2.12] )
Let G = (V ,E ) be a graph and v ∈ V be a leaf with nonleaf neighbor
u ∈ V . Let ϕ be a product of toggles such that τv and τu are in the
product once each. The triple (I(G), ϕ, 2χv + 1χu) exhibit homomesy
with average 1.

Example (ϕ = τdτcτbτa)

#
c

#
a

#
d

#b
ϕ−→
 
c

 
a

#
d

#b
ϕ−→
#
c

#
a

 
d

#b
ϕ−→
#
c

 
a

#
d

#b

ϕ−→
#
c

#
a

#
d

 b
ϕ−→
 
c

#
a

#
d

#b
ϕ−→
#
c

 
a

 
d

#b
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General Toggling Result
Theorem (Generalization of [JR18, Thm. 2.12] )
Let G = (V ,E ) be a graph and v ∈ V be a leaf with nonleaf neighbor
u ∈ V . Let ϕ be a product of toggles such that τv and τu are in the
product once each. The triple (I(G), ϕ, 2χv + 1χu) exhibit homomesy
with average 1.

Sketch of Proof.
Assuming τv comes before τu in ϕ and S contains v but not u.
Case 1.

 
v

#
u

. . .

. . .

. . .

ϕ−→ #
v

 
u

. . .

. . .

. . .

ϕ−→ #
v

#
u

. . .

. . .

. . .
Case 2.

 
v

#
u

. . .

. . .

. . .

ϕ−→ #
v

#
u

. . .

. . .

. . .
Similar case if τv comes before τu in ϕ.
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Toggling Independent Sets on a Path Graph
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Path Graphs

Let Pn = (V ,E ) be the path graph with V = [n] = {1, . . . , n} and
E = {{i , i + 1} : i < n}.

# #  # #  
1 2 3 4 5 6

We can represent the independent set {3, 6} with the binary string
001001 where a 1 in the jth spot means j is in the set.

I Sometimes called the characteristic vector.
The number of binary strings of length n that do not contain
substrings of 11 is easily given by the nth Fibonacci number.
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Left to Right Toggling

Let ϕ be the toggle of each vertex of Pn from let to right.
For P4, ϕ = τ4τ3τ2τ1.

Example (Toggling an independent set from I(P4))

ϕ

(
# #  #
1 2 3 4

)
=  

1
#
2

#
3

 
4

ϕ

(
 # #  
1 2 3 4

)
= #

1
 
2

#
3

#
4

In binary notation we write ϕ(0010) = 1001 and ϕ(1001) = 0100.
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ϕ-Orbit Board and Homomesy

Example (The ϕ-orbit boards of I(P5))
00000 01000 10010
10101 00101 01001

10000 00100
01010
00001
10100
00010
10001
01000

Toggling independent sets of the path graph results in orbits which
are much less regular than for cyclic rotation structure.
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ϕ-Orbit Board and Homomesy

Example (The ϕ-orbit boards of I(P5))
00000 01000 10010
10101 00101 01001

10000 00100
01010
00001
10100
00010
10001
01000

10101 32223 11111

Theorem ([JR18, Thm. 2.9])
The triple (I(Pn), ϕ, χj − χn+1−j) exhibits homomesy with average 0 for
all 1 ≤ j ≤ n.
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Partition Orbit Board into Snakes

1 0 0 0 1 0 1 0 1 0
0 1 0 0 0 0 0 0 0 1
0 0 1 0 1 0 1 0 0 0
1 0 0 0 0 0 0 1 0 1
0 1 0 1 0 1 0 0 0 0
0 0 0 0 0 0 1 0 1 0
1 0 1 0 1 0 0 0 0 1
0 0 0 0 0 1 0 1 0 0
1 0 1 0 0 0 0 0 1 0
0 0 0 1 0 1 0 0 0 1
1 0 0 0 0 0 1 0 0 0
0 1 0 1 0 0 0 1 0 1
0 0 0 0 1 0 0 0 0 0
1 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 0 0 0 0
6 3 4 4 4 4 4 4 3 6

Sketch of Proof.
Partition the orbit board into snakes.
Whenever we have a 1 in the oribit
board that is not in the right column
exactly one of two things happen.

There is a 1 two places to the
right.

1 0 1

Otherwise there is a 1 down and
to the right

1 0 0
0 1 0
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Cyclic Shifting Snakes

1 0 0 0 1 0 1 0 1 0
0 1 0 0 0 0 0 0 0 1
0 0 1 0 1 0 1 0 0 0
1 0 0 0 0 0 0 1 0 1
0 1 0 1 0 1 0 0 0 0
0 0 0 0 0 0 1 0 1 0
1 0 1 0 1 0 0 0 0 1
0 0 0 0 0 1 0 1 0 0
1 0 1 0 0 0 0 0 1 0
0 0 0 1 0 1 0 0 0 1
1 0 0 0 0 0 1 0 0 0
0 1 0 1 0 0 0 1 0 1
0 0 0 0 1 0 0 0 0 0
1 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 0 0 0 0

Sketch of Proof.
Let 2 denote a jump to the right and
1 diagonal down-right move. We get
right-cylic shifts of compositions of 9.

112212
122121
221211
212112
121122
211221

So with one composition of 9 we can
recover the entire board and know
where the 1s will be.

29



Other Properties of the Path Graph

We can also use this snake decomposition to get other properties of the
orbit board.

Can be used to determine the sizes of orbit boards.
The number of orbits is the number of inequivalent compositions of
n − 1 into 1s and 2s. (Number of binary necklaces avoiding substring
00)
With a fair amount of work and Coxeter theory the following can be
proved

Theorem ([JR18, Thm. 2.30])
Let ψ be product of the toggles τ1, . . . , τn in any order. Any statistic
which is a linear combination of the indicator functions χj is c-mesic under
the action of ϕ if and only if it is c-mesic under the action of ψ.
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Toggling Independent Sets on a Rectangle Graph
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Rectangle Graph

Let Rn = (V ,E ) be the 2× n rectangle graph where
V = {(i , j)|1 ≤ i ≤ 2, 1 ≤ j ≤ n} and {(i , j), (k, `)} ∈ E if and only if
i = k and |j − `| = 1, or i 6= k and j = `.

 
(1, 1)

 
(2, 1)

 
(1, 2)

 
(2, 2)

 
(2, 3)

 
(1, 3)

 
(1, 4)

 
(2, 4)

 
(1, 5)

 
(2, 5)

Goal: Prove a homomesy for I(Rn) the independent sets of the
rectangle 2× n similar to that for the I(Pn) independent sets of the
1× n rectangle.
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Toggle on Rn

Define ϕ = τ(2,n)τ(1,n) · · · τ(2,1)τ(1,1), toggling top to bottom, left to
right.

Example

ϕ


#

(1, 1)

 
(2, 1)

 
(1, 2)

#
(2, 2)

#
(2, 3)

#
(1, 3)

 =
#

(1, 1)

#
(2, 1)

#
(1, 2)

 
(2, 2)

#
(2, 3)

 
(1, 3)

By commutativity of toggles ϕ = τ(2,n) · · · τ(2,1)τ(1,n) · · · τ(1,1) toggling
left to right then top to bottom.
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ϕ-Orbits of I(R3)

The five orbits of I(R3) under ϕ = τ(2,n)τ(1,n) · · · τ(2,1)τ(1,1)

 

#

#

#

#

 

−→
#

#

#

 

#

#
−→

 

#

#

#

 

#
−→

#

 

#

#

#

 
−→

#

#

 

#

#

#
,

#

#

#

#

#

#
−→

 

#

#

 

 

#
−→

#

#

#

#

#

 
−→

 

#

#

#

#

#
−→

#

 

 

#

#

 
,

#

#

#

#

 

#
−→

 

#

#

 

#

#
,

#

 

#

#

#

#
−→

#

#

 

#

#

 
,

 

#

#

#

#

 
−→

#

 

 

#

#

#
−→

#

#

#

 

 

#
.
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Homomesy 1

Conjecture (Homomesy 1)
For I(Rn) with n ≥ 2 given and

f (S) =
n−1∑
i=1

χ(1,i) −
n∑

i=2
χ(2,i)

the triple (I(Rn), ϕ, f ) exhibit homomesy with average 0.

1

2
#

#

#

 #

 #

 

 

#
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Example of Homomesy 1 in I(R3)

 

#

#

#

#

 

−→
#

#

#

 

#

#
−→

 

#

#

#

 

#
−→

#

 

#

#

#

 
−→

#

#

 

#

#

#
,

#

#

#

#

#

#
−→

 

#

#

 

 

#
−→

#

#

#

#

#

 
−→

 

#

#

#

#

#
−→

#

 

 

#

#

 
,

#

#

#

#

 

#
−→

 

#

#

 

#

#
,

#

 

#

#

#

#
−→

#

#

 

#

#

 
,

 

#

#

#

#

 
−→

#

 

 

#

#

#
−→

#

#

#

 

 

#
.
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Homomesy 2

Conjecture (Homomesy 2)
For I(Rn) with n ≥ 2 given and let

f (S) = χ(1,1) + χ(2,1) − (χ(1,n) + χ(2,n))

then the triple (I(Rn), ϕ, f ) exhibit homomesy with average 0.

0 1
#

#

#

 #

 #

 

 

#
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Example of Homomesy 2 in I(R3)

 

#

#

#

#

 

−→
#

#

#

 

#

#
−→

 

#

#

#

 

#
−→

#

 

#

#

#

 
−→

#

#

 

#

#

#
,

#

#

#

#

#

#
−→

 

#

#

 

 

#
−→

#

#

#

#

#

 
−→

 

#

#

#

#

#
−→

#

 

 

#

#

 
,

#

#

#

#

 

#
−→

 

#

#

 

#

#
,

#

 

#

#

#

#
−→

#

#

 

#

#

 
,

 

#

#

#

#

 
−→

#

 

 

#

#

#
−→

#

#

#

 

 

#
.
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Homomesy 3

Conjecture (Homomesy 3)
For I(Rn) with n ≥ 2 given and

f (S) = χ(1,2) + χ(2,2) − (χ(1,n−1) + χ(2,n−1))

then the triple (I(Rn), ϕ, f ) exhibit homomesy with average 0.

1 1
#

#

#

 #

 #

 

 

#
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Homomesy 4?
One might wonder...

Conjecture (Homomesy 4?)
For I(Rn) with n ≥ 3 given and

f (S) = χ(1,3) + χ(2,3) − (χ(1,n−2) + χ(2,n−2))

then the triple (I(Rn), ϕ, f ) exhibit homomesy with average 0.

1 1
#

#

#

#

#

 

 

#

#

 

#

#

#

 

There is a counter example in I(R7); an orbit that contains 12
elements. You may use the element above to generate this counter
example.
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Ternary Strings

There is a bijection between I(Rn) and ternary strings of 0, 1 and 2 and of
length n which do not contain substrings of 11 and 22 by the following
map. Given an S we map the columns of Rn like so,

#

#
→ 0,

 

#
→ 1,

#

 
→ 2

For example
#

#

#

 #

 #

 

 

#
−→ 02121
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Toggling and Ternary Strings
The action ϕ carries over to ternary strings in a nice way.

Let τi = τ(2,i)τ(1,i).
ϕ = τ(2,n)τ(1,n) · · · τ(2,1)τ(1,1) = τn . . . τ1.

To toggle τi = τ(2,i)τ(1,i) in the string just increment the ith entry modulo
3 until you get a string with no substring 11 or 22 from left to right.

02121 τ1−→ 12121 τ2−→ 10121 τ3−→ 10021 τ4−→ 10001 τ5−→ 10002

#

#

#

 #

 #

 

 

#

ϕ−→
 

#

#

# #

# #

#

#

 

The number of these string for I(Rn) is given by
a(n) = 2a(n − 1) + a(n − 2) where a(0) = 1 and a(1) = 3.

n 0 1 2 3 4 5 6 . . .
a(n) 1 3 7 17 41 99 239 . . .

a(n) is also sequence OEIS A078057 .
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The Nine ϕ-Orbit Boards of I(R4)

2 1 2 1
0 0 0 2
1 2 1 0
0 0 2 1
1 0 0 2
2 1 0 0
0 2 1 2
1 0 0 0

0 1 2 1
2 0 0 2
0 1 0 0
2 0 1 2
0 2 0 0
1 0 1 2
2 0 0 0

1 2 0 1
0 0 2 0
1 0 0 1
2 1 2 0
0 0 0 1
1 2 0 2
0 0 1 0

2 0 2 1
0 1 0 2
2 0 1 0
0 2 0 1
1 0 2 0
2 1 0 1
0 2 0 2
1 0 1 0

1 2 1 2
0 0 0 0

0 0 1 2
1 2 0 0

1 0 2 1
2 1 0 2
0 2 1 0

0 1 0 1
2 0 2 0

2 0 0 1
0 1 2 0

The 41 elements of I(R4) partitioned into nine orbit boards.
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0-Snakes in I(Rn)
Conjecture (Homomesy 2)
For I(Rn) with n ≥ 2 given and let

f (S) = χ(1,1) + χ(2,1) − (χ(1,n) + χ(2,n))

then the triple (I(Rn), ϕ, f ) exhibit homomesy with average 0.

We can prove Homomesy 2 similar to how we proved the theorem from
path graphs. Notice how we can partition the orbit boards into snakes of
zeroes. Thus we can identify zeroes in the first and last column.

2 0 2 1
0 1 0 2
2 0 1 0
0 2 0 1
1 0 2 0
2 1 0 1
0 2 0 2
1 0 1 0

1 2 0 1
0 0 2 0
1 0 0 1
2 1 2 0
0 0 0 1
1 2 0 2
0 0 1 0

1 0 2 1
2 1 0 2
0 2 1 0
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Zero Snake Lemma

Lemma
For any orbit board in I(Rn):

If a zero is the first or last
column then there is no
zero below.
If a zero is to the left of
another zero then there
then it is not also above
another zero
If a zero is to the left of a
nonzero and above a
nonzero then there is a
zero diagonally down
right.

0 1 . . .
0 2 . . .

. . . 0 0 . . .

. . . 0 1 . . .

. . . 0 1 . . .

. . . 1 2 . . .
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Proof of Zero Snake Lemma

Proof.
If a zero is the first or last column then there is no zero below.

The only way for a 0 to increment back around to a 0 is for it to be
adjacent is a 1 and a 2 but since the 0 is on the first or last column this is
impossible.

If a zero is to the left of another zero then there then it is not also
above another zero

Again the only way to increment a 0 back to a zero is for it to be adjacent
to a 1 and a 2 but one of its neighbors is already a 0 so this is impossible.

If a zero is to the left of a nonzero and above a nonzero then there is
a zero diagonally down right.

There are two cases:
0 1
2 −→ 0 1

2 0
0 2
1 −→ 0 2

1 0

46



Homomesy 2 Conclusion

0 1
#

#

#

 #

 #

 

 

#

These statements allow us to say that zero snakes will never split or end
prematurely. Also that they match exactly one zero is another zero
without ambiguity. Thus Homomesy 2 is proved.

1 1
#

#

#

 #

 #

 

 

#

Because the zeros in the second column are allowed to be stacked on top
of each other we cannot use this trick to prove Homomesy 3.
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Observation

An idea for how to get Homomesy 3. We should prove the following

Conjecture
Either the leftmost two columns and the rightmost two columns of a ϕ
orbit board have the same number of 1s and 2s in the same order up to
vertical shift or this is true if one side’s 1s and 2s are interchanged and
order is reversed.

1 2 0 1
0 0 2 0
1 0 0 1
2 1 2 0
0 0 0 1
1 2 0 2
0 0 1 0

2 0 2 1
0 1 0 2
2 0 1 0
0 2 0 1
1 0 2 0
2 1 0 1
0 2 0 2
1 0 1 0
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Toggling Independent Sets on Km × [n]

49



Km × [n] Graph

Instead of looking at ternary strings that do not contain substrings of 11
or 22 we can generalize to string of {0, 1, . . . ,m} which do not contain
substrings of jj for any j = 1, . . . ,m. Toggling at a entry would change to
incriminating the entry modulo m + 1 until you get a string without the
substring jj for all nonzero j .

Example (K3 × [4])

 

   

   

   

  

This equates to toggling independent sets on Km × [n] where Km is the
complete graph on m vertices.
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Km × [n] Graph

Given a map from {1, . . . ,m} onto the vertices of Km we can find a
bijection between I(Km × [n]) and m-strings.

Example (K3 × [4])

1320→

 

# # #

#  #

 # #

# #
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Homomesy for I(Km × [n])

#

# # #

# # #

# # #

# #

Conjecture
Homomesy 1, 2, and 3 extend to I(Km × [n]) with the following tweaks:
For certain distinct a, b ∈ {1, . . . ,m} redefine the statistics as follows

Homomesy 1: new f =
∑n−1

i=1 χ(a,i) −
∑n

i=2 χ(b,i)

Homomesy 2: new f = χ(1,1) + · · ·+ χ(m,1) − (χ(1,n) + · · ·+ χ(m,n))
Homomesy 3: new
f = χ(1,2) + · · ·+ χ(m,2) − (χ(1,n−1) + · · ·+ χ(m,n−1))
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Example Orbit Board from K4 × 6

0 0 1 2 3 1
1 2 3 4 0 2
3 4 0 0 1 3
0 0 1 2 4 0
1 2 3 0 0 1
3 4 0 1 2 3
0 0 2 3 4 0
1 3 4 0 0 1
2 0 0 1 2 3
3 1 2 3 4 0
4 3 4 0 0 1
0 0 0 1 2 3
1 2 3 4 0 4
3 4 0 0 1 0
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Example Orbit Board from K4 × 6

0 0 1 2 3 1
1 2 3 4 0 2
3 4 0 0 1 3
0 0 1 2 4 0
1 2 3 0 0 1
3 4 0 1 2 3
0 0 2 3 4 0
1 3 4 0 0 1
2 0 0 1 2 3
3 1 2 3 4 0
4 3 4 0 0 1
0 0 0 1 2 3
1 2 3 4 0 4
3 4 0 0 1 0

Example (Homomesy 1 with a = 3 and
b = 1)
We find

∑n−1
i=1 χ(3,i) = 12 and

∑n
i=2 χ(1,i) = 12.
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Example Orbit Board from K4 × 6

0 0 1 2 3 1
1 2 3 4 0 2
3 4 0 0 1 3
0 0 1 2 4 0
1 2 3 0 0 1
3 4 0 1 2 3
0 0 2 3 4 0
1 3 4 0 0 1
2 0 0 1 2 3
3 1 2 3 4 0
4 3 4 0 0 1
0 0 0 1 2 3
1 2 3 4 0 4
3 4 0 0 1 0

Example (Homomesy 1 with a = 4 and
b = 2)
We find

∑n−1
i=1 χ(3,i) = 11 and

∑n
i=2 χ(1,i) = 11.
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Example Orbit Board from K4 × 6

0 0 1 2 3 1
1 2 3 4 0 2
3 4 0 0 1 3
0 0 1 2 4 0
1 2 3 0 0 1
3 4 0 1 2 3
0 0 2 3 4 0
1 3 4 0 0 1
2 0 0 1 2 3
3 1 2 3 4 0
4 3 4 0 0 1
0 0 0 1 2 3
1 2 3 4 0 4
3 4 0 0 1 0

Example (Homomesy 2)
We find χ(1,1) + · · ·+ χ(m,1) = 10 and
(χ(1,n) + · · ·+ χ(m,n)) = 10
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Example Orbit Board from K4 × 6

0 0 1 2 3 1
1 2 3 4 0 2
3 4 0 0 1 3
0 0 1 2 4 0
1 2 3 0 0 1
3 4 0 1 2 3
0 0 2 3 4 0
1 3 4 0 0 1
2 0 0 1 2 3
3 1 2 3 4 0
4 3 4 0 0 1
0 0 0 1 2 3
1 2 3 4 0 4
3 4 0 0 1 0

Example (Homomesy 3)
We find χ(1,2) + · · ·+ χ(m,2) = 9 and
(χ(1,n−1) + · · ·+ χ(m,n−1)) = 9
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Relating these Maps to Promotion of Order Ideals
in Posets
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Posets

Let (P,≤) be a partially ordered set (poset) where P is nonempty set
and ≤ is a relation on the elements of P which is reflexive,
antisymmetric, and transitive.
When P is finite we can represent (P,≤) by it’s Hasse diagram.

Example (Divisors of 175)
Let P = {x : x |175} and x ≤ y if and only if x |y.

1

57

35 25

175
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Order Ideals

An order ideal of P is a subset I of P such that if y ∈ I and x < y
then x ∈ I.

Example (An order ideal of the Divisors of 175)

1

57

35 25

175

Let J (P) denote the set of all order ideals of (P,≤)
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Toggling Order Ideals of a Posets

Let I ∈ J (P). For all y ∈ P, let ty (I) : J (P)→ J (P) denote the
following map

ty (I) =


I r {y} if y ∈ I and I r y ∈ J (P),
I ∪ {y} if y 6∈ I and I ∪ {y} ∈ J (P),

I otherwise.
Similar to independent sets, we call ty the toggle at y .

Example (Toggle at 25 in the Divisors of 175)

t25


1

57

35 25

175


=

1

57

35 25

175
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Zigzag Posets

Let Zn = ([n],≤) be the zigzag poset where i ≤ i + 1 and i ≤ i − 1
provided i is odd.

Example (Z6)

1

2

3

4

5

6

Let Pro = tn · · · t1.

We call this product of toggles Pro because of it’s connection to
rowmotion and promotion on order ideals, paved by [SW12].
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Toggling the Zigzag Posets

ty (I) =


I r {y} if y ∈ I and I r y ∈ J (P),
I ∪ {y} if y 6∈ I and I ∪ {y} ∈ J (P),

I otherwise.

Example (Pro of an order ideal of Z5)

Pro


1

2

3

4

5

 =
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Toggling the Zigzag Posets

ty (I) =


I r {y} if y ∈ I and I r y ∈ J (P),
I ∪ {y} if y 6∈ I and I ∪ {y} ∈ J (P),

I otherwise.

Example (Pro of an order ideal of Z5)

Pro


1

2

3

4

5

 =
1
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Toggling the Zigzag Posets

ty (I) =


I r {y} if y ∈ I and I r y ∈ J (P),
I ∪ {y} if y 6∈ I and I ∪ {y} ∈ J (P),

I otherwise.

Example (Pro of an order ideal of Z5)

Pro


1

2

3

4

5

 =
1

2
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Toggling the Zigzag Posets

ty (I) =


I r {y} if y ∈ I and I r y ∈ J (P),
I ∪ {y} if y 6∈ I and I ∪ {y} ∈ J (P),

I otherwise.

Example (Pro of an order ideal of Z5)

Pro


1

2

3

4

5

 =
1

2

3

66



Toggling the Zigzag Posets

ty (I) =


I r {y} if y ∈ I and I r y ∈ J (P),
I ∪ {y} if y 6∈ I and I ∪ {y} ∈ J (P),

I otherwise.

Example (Pro of an order ideal of Z5)

Pro


1

2

3

4

5

 =
1

2

3

4
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Toggling the Zigzag Posets

ty (I) =


I r {y} if y ∈ I and I r y ∈ J (P),
I ∪ {y} if y 6∈ I and I ∪ {y} ∈ J (P),

I otherwise.

Example (Pro of an order ideal of Z5)

Pro


1

2

3

4

5

 =
1

2

3

4

5
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Equivariant Bijection
Theorem ([JR18, Prop. 5.4,5.6])
There exists an bijection η : I(Pn)→ J (Zn) such that Pro ◦ η = η ◦ ϕ,
making η an equivariant bijection.

The bijection η is given by mapping the vertices of S to the elements
of I.

I If j is odd then jth entry being 1 means j 6∈ I otherwise j ∈ I
I If j is even then jth entry being 1 means j ∈ I otherwise j 6∈ I

Example

10010 η−→
1

2

3

4

5
ϕ ↓ ↓ Pro

01001 η−→
1

2

3

4

5
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The Wn Poset

Let Wn = ([2]× [n],≤) be the poset where
I (1, i) ≤ (1, i + 1) and (1, i) ≤ (1, i − 1) provided i is odd,
I (2, i) ≤ (2, i + 1) and (2, i) ≤ (2, i − 1) provided i is even,
I (1, i) ≤ (2, i) when i is odd,
I and (2, i) ≤ (1, i) when i is even.

Example (W5)

(1, 1)

(2, 1) (1, 2)

(2, 2) (1, 3)

(2, 3) (1, 4)

(2, 4) (1, 5)

(2, 5)
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The Wn Poset

Let Wn = ([2]× [n],≤) be the poset where
I (1, i) ≤ (1, i + 1) and (1, i) ≤ (1, i − 1) provided i is odd,
I (2, i) ≤ (2, i + 1) and (2, i) ≤ (2, i − 1) provided i is even,
I (1, i) ≤ (2, i) when i is odd,
I and (2, i) ≤ (1, i) when i is even.

Example (W5)

(1, 1)

(2, 1) (1, 2)

(2, 2) (1, 3)

(2, 3) (1, 4)

(2, 4) (1, 5)

(2, 5)

We can see two copies of Z5 stacked on top of each other in W5,
albeit with one copy of Z5 flipped upside down.
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The Wn Poset

Let Wn = ([2]× [n],≤) be the poset where
I (1, i) ≤ (1, i + 1) and (1, i) ≤ (1, i − 1) provided i is odd,
I (2, i) ≤ (2, i + 1) and (2, i) ≤ (2, i − 1) provided i is even,
I (1, i) ≤ (2, i) when i is odd,
I and (2, i) ≤ (1, i) when i is even.

Example (W5)

(1, 1)

(2, 1) (1, 2)

(2, 2) (1, 3)

(2, 3) (1, 4)

(2, 4) (1, 5)

(2, 5)

Conjecture
Let T = t(2,n) · · · t(2,1)t(1,n) · · · t(1,1). There exists an bijection
β : I(Rn)→ J (Wn) such that T ◦ β = β ◦ ϕ, making β an equivariant
bijection.
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Equivariant Bijection?

This candidate bijection β is given by mapping the vertices of S to
the elements of I.

I If j is odd then jth entry being 1 means (1, j) 6∈ I otherwise (1, j) ∈ I
I If j is odd then jth entry being 2 means (2, j) ∈ I otherwise (2, j) 6∈ I
I If j is even then jth entry being 1 means (1, j) ∈ I otherwise (1, j) 6∈ I
I If j is even then jth entry being 2 means (2, j) 6∈ I otherwise (2, j) ∈ I

Example

20120 β−→
(1, 1)

(2, 1) (1, 2)

(2, 2) (1, 3)

(2, 3) (1, 4)

(2, 4) (1, 5)

(2, 5)

ϕ ↓ ↓ T

02001 β−→
(1, 1)

(2, 1) (1, 2)

(2, 2) (1, 3)

(2, 3) (1, 4)

(2, 4) (1, 5)

(2, 5)
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The End is Nigh

Thank You!
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